K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2018

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{ab+ac}{2}=\frac{ba+bc}{3}=\frac{ca+cb}{4}=\frac{\left(ab+ac\right)+\left(ba+bc\right)-\left(ca+cb\right)}{2+3-4}=\frac{2ab}{1}\)

Tương tự \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}=\frac{2bc}{5}\)

\(\frac{ab+ac}{2}=\frac{ba+bc}{3}=\frac{ca+cb}{4}=\frac{2ac}{3}\)

Do đó \(\frac{2ab}{1}=\frac{2bc}{5}\Rightarrow\frac{a}{1}=\frac{c}{5}\Rightarrow\frac{a}{3}=\frac{c}{15}\)

\(\frac{2bc}{5}=\frac{2ac}{3}\Rightarrow\frac{b}{5}=\frac{a}{3}\)

Do vậy \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

ab+ac2=ba+bc3=ca+cb4=(ab+ac)+(ba+bc)(ca+cb)2+34=2ab1ab+ac2=ba+bc3=ca+cb4=(ab+ac)+(ba+bc)−(ca+cb)2+3−4=2ab1

Tương tự ab+ac2=bc+ba3=ca+cb4=2bc5ab+ac2=bc+ba3=ca+cb4=2bc5

ab+ac2=ba+bc3=ca+cb4=2ac3ab+ac2=ba+bc3=ca+cb4=2ac3

Do đó 2ab1=2bc5a1=c5a3=c152ab1=2bc5⇒a1=c5⇒a3=c15

2bc5=2ac3b5=a32bc5=2ac3⇒b5=a3

Do vậy a3=b5=c15

19 tháng 6 2016

S lon nhat bang 3 khi trong 4 so a,b, cd co 1 so bang 1con 3 so  bang

2 tháng 2 2019

tu ve hinh : 

xet tamgiac AMB va tamgiac AMC co : goc BAM = goc CAM do AM la phan giac cua goc BAC (gt)

AB = AC va goc ABC = goc ACB do tamgiac ABC can tai A (gt)

=> tamgiac AMB = tamgiac AMC (c - g - c)           (1)

b, (1) => goc AMB = goc AMC 

goc AMB + goc AMC = 180 (ke bu)

=> goc AMB = 90 

=> AM | BC (dn)

2 tháng 2 2019

 MINH NHO CAC BAN GIUP MINH PHAN d MA