Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-x^2+2x+3=-\left(x^2-2x-3\right)\)
\(=-\left(x^2-2x+1-4\right)\)
\(=-\left[\left(x-1\right)^2-4\right]=-\left(x-1\right)^2+4\le4\)
Vậy \(A_{max}=4\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(B=-2x^2-4x=-2\left(x^2+2x\right)\)
\(=-2\left(x^2+2x+1-1\right)\)
\(=-2\left[\left(x+1\right)^2-1\right]=-\left(x+1\right)^2+2\le2\)
Vậy \(B_{max}=2\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
\(C=-x^2-6x+12=-\left(x^2+6x-12\right)\)
\(=-\left(x^2+6x+9-21\right)\)
\(=-\left[\left(x+3\right)^2-21\right]=-\left(x+3\right)^2+21\le21\)
Vậy \(C_{max}=21\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
\(D=-x^2+3x-1==-\left(x^2-3x+1\right)\)
\(=-\left(x^2-3x+\frac{9}{4}-\frac{5}{4}\right)\)
\(=-\left[\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\right]=-\left(x-\frac{3}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\)
Vậy \(D_{max}=\frac{5}{4}\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
Bạn tự xét dấu "=" nhé, mình chỉ hướng dẫn cách tách thôi
a) \(A=5x^2-4x+1\)
\(A=5\left(x^2-\frac{4}{5}x+\frac{1}{5}\right)\)
\(A=5\left[x^2-2\cdot x\cdot\frac{2}{5}+\left(\frac{2}{5}\right)^2+\frac{1}{25}\right]\)
\(A=5\left[\left(x-\frac{2}{5}\right)^2+\frac{1}{25}\right]\)
\(A=5\left(x-\frac{2}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\forall x\)
b) Tương tự đặt -9 ra ngoài rồi khai triển như câu a)
c) \(F=-2x^2-y^2+2xy+4x-40\)
\(F=-x^2-x^2-y^2+2xy+4x-40\)
\(F=-\left(x^2-2xy+y^2\right)-\left(x^2-4x+4\right)-36\)
\(F=-36-\left(x-y\right)^2-\left(x-2\right)^2\)
\(F=-36-\left[\left(x-y\right)^2+\left(x-2\right)^2\right]\le-36\forall x;y\)
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)
a,\(xy+3x-7y-21\)
\(=x\left(y+3\right)-7\left(y+3\right)\)
\(=\left(y+3\right)\left(x-7\right)\)
\(b,2xy-15-6x+5y\)
\(=\left(2xy-6x\right)+\left(-15+5y\right)\)
\(=2x\left(y-3\right)-5\left(3-y\right)\)
\(=2x\left(y-3\right)+5\left(y-3\right)\)
\(=\left(y-3\right)\left(2x+5\right)\)
lê thị hương giang e ko nghĩ câu F đề sai đâu ạ! Chị check giúp xem em có tính sai hay ko nha!
2/ Ta có:
\(F=\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4+x^2+8x+16-20\)
\(=\left(x-y+2\right)^2+\left(x+4\right)^2-20\ge-20\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=-4\\y=-2\end{matrix}\right.\)