Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức |m|+ |n|≥ |m + n| .Dấu = xảy ra khi m,n cùng dấu
A ≥ |x − a + x − b|+ |x − c + x − d| = |2x − a − b|+ |c + d − 2x| ≥ |2x − a − b − 2x + c + d| =|c + d − a − b|
Dấu = xảy ra khi x − a và x − b cùng dấu hay(x ≤ a hoặc x ≥ b)
x − c và x − d cùng dấu hay(x ≤ c hoặc x ≥ d)
2x − a − b và c + d − 2x cùng dấu hay (x + b ≤ 2x ≤ c + d)
Vậy Min A =c+d-a-b khi b ≤ x ≤ c
~ Học tốt ~ K cho mk nha. Thank you.
1) \(2^{x+2}-96=2^x\)\(\Leftrightarrow2^{x+2}-2^x=96\)\(\Leftrightarrow2^x\left(2^2-1\right)=96\)
\(\Leftrightarrow3.2^x=96\)\(\Leftrightarrow2^x=32=2^5\)\(\Leftrightarrow x=5\)
Vậy \(x=5\)
2) \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=b\), \(b=c\), \(c=a\)\(\Rightarrow a=b=c\)
Câu 1:
\(2^{x+2}-96=2^x\)
\(\Leftrightarrow2^{x+2}-2^x=96\)(chuyển vế nha bạn)
\(\Leftrightarrow2^x.\left(2^2-1\right)=96\)
\(\Leftrightarrow2^x.3=96\Rightarrow2^x=32=\left(+-6\right)^2\)
\(\Rightarrow x=2\)
Câu 2:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow a=b.1=b\)và \(b=c.1=c\)và \(c=a.1=a\)
\(\Rightarrow a=b=c\)
ủa thế bài yêu cầu gì vậy nhỉ?
ghi rõ lại đề đi :v cả đề