Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,0,36.350+1,2.20.3+9.4.4,5
=13.3.35+12.2.3+9.2.3.3
=3.(13.35+12.2+.9.2.3)
=3.(455+24+54)
=3.533
=1599
b,2015.2016-5/2015.2015+2010
=4062240-5+2010
=4064245
c,2/1.3+2/3.5+2/5.7+...+2/71.73
=1-1/3+1/3-1/5+1/5-1/7+...+1/71-1/73
=1-1/73
=72/73
d,(1+1/2).(1+1/3)+...+(1+1/2018)
=3/2.4/3.5/4+...+2019/2018
=2019/2
e,E=1/4.5+1/5.6+1/6.7+...+1/80.81(làm tương tự với phần d nên mình làm ngắn
=1/4-1/81
=77/324
f,F=3/2.3+3/3.4+...+3/99.100
=3.(1/2.3+1/3.4+...+1/99.100)(làm tương tự với d
=3.(1/2-1/100)
=3.49/100
=147/100
gG=5/1.4+5/4.7+...+5/61.64
3G=5.(3/1.4+3./4.7+...+3/61.64)
=5.(1-1/64)
=5.63/64
=315/64
ok nha bạn,mình giữ đúng lời hứa.
= \(\frac{1.3-1}{1.3}+\frac{3.5-1}{3.5}+...+\frac{17.19-1}{17.19}=1-\frac{1}{1.3}+1-\frac{1}{3.5}+...+1-\frac{1}{17.19}\)
= \(\left(1+1+...+1\right)-\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{17.19}\right)\)
= \(9-\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{17.19}\right)=9-\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{17}-\frac{1}{19}\right)\)
= \(9-\frac{1}{2}.\left(1-\frac{1}{19}\right)=9-\frac{1}{2}.\frac{18}{19}=9-\frac{9}{19}=\frac{162}{19}\)
3 câu như nhau cả thôi :v
\(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{55\cdot57}\)
\(A=\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{55\cdot57}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{55}-\frac{1}{57}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{57}\right)\)
\(A=\frac{1}{2}\cdot\frac{56}{57}\)
\(A=\frac{28}{57}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{x.\left(x+2\right)}=\frac{20}{41}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{x.\left(x+2\right)}\right)=\frac{20}{41}\)
\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\Rightarrow1-\frac{1}{x+2}=\frac{20}{41}:\frac{1}{2}\)
\(\Rightarrow1-\frac{1}{x+2}=\frac{40}{41}\)
\(\Rightarrow\frac{1}{x+2}=1-\frac{40}{41}=\frac{1}{41}\)
=> x + 2 = 41
=> x = 39
Ta có:
1/1.3 + 1/3.5 + 1/5.7 + ... + 1/x.(x+2) = 1/2.(2/1.3 + 2/3.5 + 2/5.7 + ... + 2/x.(x+2)
= 1/2.(1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/x - 1/x+2
= 1/2.(1 - 1/x+2)
=> 1/2.(1 - 1/x+2) = 20/41
1 - 1/x+ 2 = 20/41 : 1/2
1 - 1/x+2 = 40/41
1/x+2 = 1/41
=>x + 2 = 41
=>x = 41 - 2
=>x = 39
Vậy x = 39
Ủng hộ nha
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x.\left(x+2\right)}=\frac{20}{41}\)
=> \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x.\left(x+2\right)}=2.\frac{20}{41}\)
=> \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{40}{41}\)
=> \(1-\frac{1}{x+2}=\frac{40}{41}\)
=> \(\frac{1}{x+2}=1-\frac{40}{41}\)
=> \(\frac{1}{x+2}=\frac{1}{41}\)
=> \(x+2=41\)
=> \(x=41-2=39\)
Gọi tổng trên là A
1/2A= 2/1.3+1/3.5+...+1/x.(x+2)
1/2A= 1-1/x.(x+2)
A=\(\frac{1-\frac{1}{x.\left(x+2\right)}}{2}\)
(2/1+2/3) + (2/3+2/5) + (2/5+2/7) + ...+ (2/77+2/79) 2/1 - 2/79 156/79
ta có:
C = 1 - 1/3 + 1/3 - 1/5 +...+1/69 - 1/71 + 1/71 - 1/73
= 1 - 1/ 73
= 72/73
\(C=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{69.71}+\)\(\frac{2}{71.73}\)
\(C=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{69}-\frac{1}{71}+\frac{1}{71}-\frac{1}{73}\)
\(C=1-\frac{1}{73}\)
\(C=\frac{72}{73}\)