Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Thay x = 25 => \(\sqrt{x}=5\)vào biểu thức A ta được :
\(A=\frac{25+6}{21}=\frac{31}{21}\)
b, Với \(x>0;x\ne4;x\ne16\)
\(B=\frac{\sqrt{x}-1}{\sqrt{x}-2}+\frac{5\sqrt{x}-8}{2\sqrt{x}-x}=\frac{\sqrt{x}-1}{\sqrt{x}-2}+\frac{5\sqrt{x}-8}{-\sqrt{x}\left(\sqrt{x}-2\right)}\)\
\(=\frac{-x+6\sqrt{x}-8}{-\sqrt{x}\left(\sqrt{x}-2\right)}=\frac{-\sqrt{x}+4}{-\sqrt{x}}=\frac{\sqrt{x}-4}{\sqrt{x}}\)
c, số xấu quá check lại phần trên hộ mình
a/ \(P=12\)
b/ \(Q=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c/ Ta có:
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Dấu = xảy ra khi x = 3 (thỏa tất cả các điều kiện )
a. Thay x = 3 vào biểu thức P ta được :
\(p=\frac{x+3}{\sqrt{x}-2}=\frac{9+3}{\sqrt{9}-2}=12\)
b, \(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c, Ta có :
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Vậy GTNN \(\frac{P}{Q}=2\sqrt{3}\) khi và chỉ khi \(x=3\)
a) Thay x=4 zô là đc . ra kết quả \(\frac{7}{6}\)là dúng
b) \(B=\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\)
\(=\frac{3x+3\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\)
\(=>P=A.B=\frac{3\sqrt{x}+1}{x+\sqrt{x}}.\frac{3\left(x+\sqrt{x}\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}=\frac{3}{3\sqrt{x}-1}\)
c) xét \(\frac{1}{P}=\frac{3\sqrt{x}-1}{3}\)
do \(\sqrt{x}\ge0=>3\sqrt{x}-1\ge-1\)\(=>\frac{3\sqrt{x}-1}{3}\ge-\frac{1}{3}\)
\(=>\frac{1}{P}\ge-\frac{1}{3}\)
dấu = xảy ra khi x=0
zậy ..
Áp dụng bđt Bunhiacopxki ta có :
\(A=\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{9}{z}\right)\ge\left(\sqrt{x}.\dfrac{1}{\sqrt{x}}+\sqrt{y}.\dfrac{2}{\sqrt{y}}+\sqrt{z}.\dfrac{3}{\sqrt{z}}\right)^2\)
\(\left(1+2+3\right)^2=36\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel
\(A\ge\dfrac{\left(1+2+3\right)^2}{x+y+z}=36\)
Đẳng thức xảy ra khi \(x=\dfrac{1}{6};y=\dfrac{1}{3};z=\dfrac{1}{2}\)
\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\frac{1}{x+1}\right).\frac{x+1}{\sqrt{x}-1}\)ĐK x>=0 x khác -1
=\(\frac{\sqrt{x}+1}{x+1}.\frac{x+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
b/ x =\(\frac{2+\sqrt{3}}{2}=\frac{4+2\sqrt{3}}{4}=\frac{3+2\sqrt{3}+1}{4}=\frac{\left(\sqrt{3}+1\right)^2}{4}\)
\(\Rightarrow\sqrt{x}=\frac{\sqrt{3}+1}{2}\)
Em thay vào tính nhé!
c) với x>1
A=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}.\sqrt{x}=\frac{x+\sqrt{x}}{\sqrt{x}-1}=\sqrt{x}+2+\frac{2}{\sqrt{x}-1}=\sqrt{x}-1+\frac{2}{\sqrt{x}-1}+3\)
Áp dụng bất đẳng thức Cosi
A\(\ge2\sqrt{2}+3\)
Xét dấu bằng xảy ra ....
a/ Với m=\(\sqrt{2}\)ta có: x2+(2\(\sqrt{2}\)-1)x-\(\sqrt{2}\)=0
\(\Delta=\left(2\sqrt{2}-1\right)^2-4\sqrt{2}=8-4\sqrt{2}+1-4\sqrt{2}=9\)
=> \(\hept{\begin{cases}x_1=\frac{1-2\sqrt{2}-3}{2}=-\sqrt{2}-1\\\text{}x_2=\frac{1-2\sqrt{2}+3}{2}=2-\sqrt{2}\end{cases}}\)
b/ Ta có: A=x12+x22 - 6x1x2 = x12+2x1x2+x22 - 8x1x2=(x1+x2)2 - 8x1x2
Theo Vi-et có: x1x2=c/a = -m và x1+x2 = -b/a = 1-2m
Thay vào A ta được:
A = (1-2m)2-8(-m) = 1-4m+4m2+8m = 4m2+4m+1 = (2m+1)2
Nhận thấy: A=(2m+1)2\(\ge\)0 với mọi m
=> Amin=0, đạt được khi m=-1/2
Đáp số: m=-1/2
a: \(A=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{x-1}\)
\(=\dfrac{2x-3\sqrt{x}+1}{x-1}=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
b: Thay \(x=4-2\sqrt{3}\) vào A, ta được:
\(A=\dfrac{2\left(\sqrt{3}-1\right)-1}{\sqrt{3}-1+1}=\dfrac{2\sqrt{3}-3}{\sqrt{3}}=2-\sqrt{3}\)
c: Để A=1/2 thì \(4\sqrt{x}-2=\sqrt{x}+1\)
=>x=1(loại)
\(A=4\left(x-1\right)+\dfrac{25}{x-1}+4\ge2\sqrt{\dfrac{100\left(x-1\right)}{x-1}}+4=24\)
Dấu "=" xảy ra khi \(x=\dfrac{7}{2}\)
Anh ơi giúp em vc này https://hoc24.vn/cau-hoi/admin-oi-xu-ly-ho-em-avt-cua-ban-nay-aban-theo-doi-em-nen-em-vao-xem-thu-trang-ca-nhan-va-tot-nhat-admin-nen-xem-se-hieuhttpshoc24vnviptienganhlamontu.330703432754