Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C F M E
a)ta có góc FAE=góc MEA=góc MFA=90o
=>AEMF là hình chữ nhật
b) Xét \(\Delta\)FMC vuông tại F và \(\Delta\)FMA vuông tại F
MF chung
AM=CM=\(\frac{BC}{2}\)(AM là trung tuyến của BC)
Suy ra :\(\Delta FMC=\Delta FMA\)(cạnh huyền - cạnh góc vuông)
=>CF=AF (2 cạnh tương ứng)
=>F là trung điểm CA
mà F lại là trung điểm của MN
=>MANC là hình bình hành
ta lại có CA vuông góc với MN
=>MANC là hình thoi
c)
ta có MC=MB ( AM là trung tuyến của BC)
ME song song AC (ME song song FA)
=> AE=EB
=>MF=AE(AEMF là hình vuông)
mà MF=NF(N là điểm đối xứng của M qua F)
AE=EB(chưng minh trên)
=>MN=AB
Mà MN=AC( MANC là hình vuông)
nên : AB=AC
=> tam giác ABC vuông cân tại A
Vậy tam giác ABC cần vuông cân tại A thì AEMF,MANC là hinh vuông
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
b: ADHE là hình chữ nhật
=>HD//AE và HD=AE
Ta có: HD//AE
D\(\in\)HF
Do đó: DF//AE
Ta có; HD=AE
HD=DF
Do đó: AE=DF
Xét tứ giác AEDF có
AE//DF
AE=DF
Do đó: AEDF là hình bình hành
c: Ta có: AEDF là hình bình hành
=>AF//DE
mà A\(\in\)KF
nên KA//ED
Ta có: EH//AD
E\(\in\)KH
Do đó: KE//AD
Xét tứ giác ADEK có
AD//EK
AK//DE
Do đó: ADEK là hình bình hành
=>AK=DE
mà DE=AF(AEDF là hình bình hành)
nên AF=AK
mà K,A,F thẳng hàng
nên A là trung điểm của KF
d: Xét tứ giác DHME có
DH//ME
DE//MH
Do đó: DHME là hình bình hành
=>DH=EM
mà DH=EA
nên EM=EA
=>E là trung điểm của AM
Xét tứ giác AHMK có
E là trung điểm chung của AM và HK
=>AHMK là hình bình hành
Hình bình hành AHMK có AM\(\perp\)HK
nên AHMK là hình thoi
Mình chỉ giải c thôi nhé :) Phần a, b nếu ai muốn biết hỏi @Nấm Chanel
A B C H E F K O I
Có \(\widehat{HEA}=\widehat{BAC}=90^o\) nên \(EH\text{//}AC\) hay \(EH\text{//}FK\)
Đồng thời tứ giác \(EHFA\) có 3 góc vuông nên là hình chữ nhật, tức EH = FA ( 2 cạnh đối ), mà AF = FK ( giả thiết ) nên EH = FK
Từ đó suy ra tứ giác EHKF là hình bình hành nên EK cắt HF tại trung điểm mỗi đường, hay I là trung điểm EK (1)
Đồng thời hình chữ nhật EHFA có hai đường chéo EF và AH cắt nhau tại O, nên O là trung điểm EF ( tính chất hình chữ nhật ) (2)
(1)(2)\(\Rightarrow\)OI là đường trung bình \(\Delta EKF\) , suy ra OI // FK, hay OI // AC
Vậy ...
a) Vì DE_|_ AB (gt) => ^DEA=90o
DF_|_ AC (gt)=>^DFA=90o
t/gABC vuông tại A (gt) => ^EAF=90o
=> tứ giác AFDE là hcn (đpcm) ( tứ giác có 3 góc _|_)
b) Vì E đối xứng với G qua D
=> ED=GD => D là trung điểm EG
H đối xứng với F qua D
=> HD=DF => D là trung điểm HF
Do đó: EFGH là hbh ( 2 đường chéo cắt nhau tại trung điểm mỗi đường) (1)
Lại có DE_|_AB (gt) mà E đối xứng với G qua D
=>EG_|_ AB
nên: GD_|_HF=> GE_|_ HF (*)
Mặt khác: DF_|_AC (gt) mà H đối xứng với F qua D
=> HF_|_AC
nên: HD_|_EG=> HF_|_EG (**)
Từ (***) => 2 đường chéo GE và HF _|_ với nhau (2)
Từ (1) và (2) => EFGH là hình thoi (hbh có 2 đường chéo _|_ với nhau)
c) Vì: EFGH là hình thoi
=> EH//FG
=> AD//FG (3)
Mà BH và CG cắt nhau tại I ( I trên HG)
=>AI//GF (4)
Từ (3) và (4) => A;D;I thẳng hàng ( tiền đề ơ-clit) ...câu này o bt đúng hay o còn tùy cái hình nx :D
ABCFEDG----H------I