K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

Đặt \(A=x^2+4xy+2y^2-22y+173\)

\(A=\left(x^2+2xy+y^2\right)+\left(y^2-22y+121\right)+52\)

\(A=\left(x+y\right)^2+\left(y-11\right)^2+52\)

\(\left(x+y\right)^2\ge0;\left(y-11\right)^2\ge0\) với mọi x;y => \(A=\left(x+y\right)^2+\left(y-11\right)^2+52\ge52\)

=>minA=52 <=> \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-11\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=0\\y-11=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-11\\y=11\end{cases}}\)

Vậy min=52 khi x=-11 và y=11

26 tháng 5 2017

bài này mình làm tắt

\(B=-x^2-x-y^2-3y+13\)

\(B=\frac{31}{2}-\left(x^2+x+\frac{1}{4}\right)-\left(y^2+3y+\frac{9}{4}\right)\)

\(B=\frac{31}{2}-\left(x+\frac{1}{2}\right)^2-\left(y+\frac{3}{2}\right)^2\le\frac{31}{2}\)

=>maxB=31/2 <=>x=-1/2 và y=-3/2

24 tháng 5 2017

x^2 + 14x + y^2 - 2y + 7

( x^2 + 14 x+ 49 ) + ( y - 2y + 1) -43

( x-7)^2 + ( y-1)^2 - 43 

 Vậy Min của biểu thức là : -43 khi \(\hept{\begin{cases}\left(x-7\right)^2\\\left(y-1\right)^2=0\end{cases}}=0\) \(\Leftrightarrow\hept{\begin{cases}x-7=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=1\end{cases}}\)

24 tháng 5 2017

Phần b cũng tương tự như vậy nhé!

6 tháng 7 2016

a) D=x2-3x+5=x2-3x+2,25+2,75=(x-1,5)2+2,75

Vì (x-1,5)2luôn lớn hơn hoặc bằng 0 nên để D nhỏ nhất thì (x-1,5)2cũng phải nhỏ nhất hay (x-1,5)2=0 =>x=1,5

b)-43

6 tháng 7 2016

bài dạng này chỉ có các bn thi violympic làm dc thui

tui làm phần E  nếu h sẽ lam hêt k thi bye

E = (x+7)2 + ( y-1)2 -49 -1 +7 

GTNN:  E = -43

22 tháng 12 2016

trước tiên bạn nên đưa về dạng tổng hai bình phương 

20 tháng 8 2020

Sửa đề:

\(C=x^2-4xy+5y^2-10y+6\)

\(C=\left(x^2-4xy+4y^2\right)+\left(y^2-10y+25\right)-19\)

\(C=\left(x-2y\right)^2+\left(y-5\right)^2-19\ge-19\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-2y\right)^2=0\\\left(y-5\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2y\\y=5\end{cases}}\Rightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)

Vậy \(Min_C=-19\Leftrightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)

20 tháng 8 2020

\(D=x^2-2xy+2y^2-2x-10y+20\)

\(D=\left(x-y\right)^2-2\left(x-y\right)+1+\left(y^2-12y+36\right)-17\)

\(D=\left(x-y-1\right)^2+\left(y-6\right)^2-17\ge-17\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-6\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=y+1\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)

Vậy \(Min_D=-17\Leftrightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)