K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\dfrac{3x}{x-2}\cdot\sqrt{x^2-4x+4}\)

\(=\dfrac{3x}{x-2}\cdot\left(x-2\right)\)

=3x

\(B=\dfrac{-5y}{x+3}\cdot\sqrt{x^2+6x+9}\)

\(=\dfrac{-5y}{x+3}\cdot\left|x+3\right|\)

\(=\pm5y\)

22 tháng 6 2017

mk nhầm dấu sửa lại câu c là \(4x-x+2\)=  \(3x+2\)

22 tháng 6 2017

a,  \(\sqrt{\left(\sqrt{2}\right)^2+2\times2\times\sqrt{2}+2^2}\)+    \(\sqrt{2^2+2\times2\times\sqrt{2}+\left(\sqrt{2}\right)^2}\)

=   \(\sqrt{\left(\sqrt{2}+2\right)^2}\)+    \(\sqrt{\left(2-\sqrt{2}\right)^2}\)

=  \(\sqrt{2}+2+2-\sqrt{2}\)

=  4   

23 tháng 8 2017

Bài 1:

a, \(\dfrac{3-\sqrt{x}}{x-9}=\dfrac{3-\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{-1}{\sqrt{x}+3}\)

b, \(6-2x-\sqrt{9-6x+x^2}\)

\(=6-2x-\sqrt{\left(3-x\right)^2}\)

\(=6-2x-3+x\left(x< 3\right)\)

\(=3-x\)

Bài 2:

\(\sqrt{1-12x+36x^2}=5\)

\(\Leftrightarrow\sqrt{\left(1-6x\right)^2}=5\)

\(\Leftrightarrow\left|6x-1\right|=5\)

+) Xét \(x\ge\dfrac{1}{6}\) có:
\(6x-1=5\Leftrightarrow x=1\)

+) Xét \(x< \dfrac{1}{6}\) có:

\(1-6x=5\)

\(\Leftrightarrow x=\dfrac{-2}{3}\)

Vậy \(\left[{}\begin{matrix}x=1\\x=\dfrac{-2}{3}\end{matrix}\right.\)

10 tháng 8 2015

\(a, A=2\sqrt{x-1}-3\sqrt{x-1}-4\sqrt{x-1}=\left(2-3-4\right)\sqrt{x-1}=-5\sqrt{x-1}\)

\(b, B=\frac{2}{x+y}.\left(x+y\right)\sqrt{\frac{3}{4}}=2\sqrt{\frac{3}{4}}=2.\frac{1}{2}.\sqrt{3}=\sqrt{3}\)

25 tháng 11 2018

a) \(\dfrac{\sqrt{2}}{\sqrt{\sqrt{2}+1}}-\dfrac{\sqrt{2}}{\sqrt{\sqrt{2}-1}}=\dfrac{\sqrt{2}\left(\sqrt{\sqrt{2}-1}\right)}{\left(\sqrt{\sqrt{2}+1}\right)\left(\sqrt{\sqrt{2}-1}\right)}-\dfrac{\sqrt{2}\left(\sqrt{\sqrt{2}+1}\right)}{\left(\sqrt{\sqrt{2}+1}\right)\left(\sqrt{\sqrt{2}-1}\right)}=\dfrac{\sqrt{2}\left(\sqrt{\sqrt{2}-1}-\sqrt{\sqrt{2}+1}\right)}{\sqrt{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}}=\dfrac{\sqrt{2}\left(\left(\sqrt{\sqrt{2}-1}-\sqrt{\sqrt{2}+1}\right)\right)}{\sqrt{2-1}}=\sqrt{2}.\left(\sqrt{\sqrt{2}-1}-\sqrt{\sqrt{2}+1}\right)\)(1)

Đặt A=\(\sqrt{\sqrt{2}-1}-\sqrt{\sqrt{2}+1}\Leftrightarrow A^2=\sqrt{2}-1+\sqrt{2}+1-2\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=2\sqrt{2}-2\sqrt{1}=2\sqrt{2}-2\Leftrightarrow A=\pm\sqrt{2\sqrt{2}-2}\)

Ta có \(\sqrt{\sqrt{2}-1}< \sqrt{\sqrt{2}+1}\Leftrightarrow\sqrt{\sqrt{2}-1}-\sqrt{\sqrt{2}+1}< 0\Leftrightarrow A< 0\)

Vậy A=\(-\sqrt{2\sqrt{2}-2}\)

(1)\(=\sqrt{2}.\left(-\sqrt{2\sqrt{2}-2}\right)=-\sqrt{4\sqrt{2}-4}\)

b) \(\sqrt{4-2\sqrt{3}}+\sqrt{\dfrac{2}{2-\sqrt{3}}}-\sqrt{27}=\sqrt{3-2.\sqrt{3}.1+1}+\sqrt{\dfrac{2\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}-\sqrt{9.3}=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\dfrac{4+2\sqrt{3}}{2^2-\left(\sqrt{3}\right)^2}}-3\sqrt{3}=\left|\sqrt{3}-1\right|+\sqrt{4+2\sqrt{3}}-3\sqrt{3}=\sqrt{3}-1-3\sqrt{3}+\sqrt{3+2\sqrt{3}+1}=-2\sqrt{3}-1+\sqrt{\left(\sqrt{3}+1\right)^2}=-2\sqrt{3}-1+\sqrt{3}+1=-\sqrt{3}\)

c) \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{3}{\sqrt{x}+3}=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+7\sqrt{x}-6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-3x+5\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-\left(3x-5\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-\left(3x-3\sqrt{x}-2\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-\left[3\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)\right]}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-\left(\sqrt{x}-1\right)\left(3\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-\left(3\sqrt{x}-2\right)}{\sqrt{x}+3}=\dfrac{2-3\sqrt{x}}{\sqrt{x}+3}\)

24 tháng 10 2017

GIÚP MÌNH VỚI MÌNH ĐANG VỘI

21 tháng 8 2017

(14,78-a)/(2,87+a)=4/1

14,78+2,87=17,65

Tổng số phần bằng nhau là 4+1=5

Mỗi phần có giá trị bằng 17,65/5=3,53

=>2,87+a=3,53

=>a=0,66.

21 tháng 8 2017

a,\(\sqrt{x-4+4\sqrt{x-4}+4}\) +\(\sqrt{x-4-4\sqrt{x-4}+4}\)

=\(\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\) (vi x>=8)

=\(\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)

b, \(\sqrt{x-1+2\sqrt{x\left(x-1\right)}+x}+\sqrt{x-1-2\sqrt{x\left(x-1\right)}+x}\)

=\(\sqrt{x-1}+\sqrt{x}+\left|\sqrt{x-1}-\sqrt{x}\right|\)

=\(\sqrt{x}+\sqrt{x-1}+\sqrt{x}-\sqrt{x-1}\) =\(2\sqrt{x}\)

c,d sai dau bai hay sao y

27 tháng 10 2023

a: Khi x=25 thì \(A=\dfrac{5-2}{5-3}=\dfrac{3}{2}\)

b: P=A*B

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\left(\dfrac{6x+6\sqrt{x}-12}{x+5\sqrt{x}+4}-\dfrac{5\sqrt{x}}{\sqrt{x}+4}\right)\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\cdot\left(\dfrac{6x+6\sqrt{x}-12}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}-\dfrac{5\sqrt{x}}{\sqrt{x}+4}\right)\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\cdot\dfrac{6x+6\sqrt{x}-12-5x-5\sqrt{x}}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}-1}=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)

c: \(\sqrt{P}< =\dfrac{1}{2}\)

=>0<=P<=1/4

=>\(\left\{{}\begin{matrix}P>=0\\P-\dfrac{1}{4}< =0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\sqrt{x}-2}{\sqrt{x}-1}>=0\\\dfrac{\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{1}{4}< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\\dfrac{4\left(\sqrt{x}-2\right)-\sqrt{x}+1}{4\left(\sqrt{x}-1\right)}< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\\dfrac{3\sqrt{x}-7}{\sqrt{x}-1}< =0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\1< \sqrt{x}< =\dfrac{7}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\1< x< \dfrac{49}{9}\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\x=\dfrac{49}{9}\end{matrix}\right.\)

=>\(4< =x< =\dfrac{49}{9}\)

mà x nguyên

nên \(x\in\left\{4;5\right\}\)

28 tháng 6 2018

\(\sqrt{x^2-6x+9}\)

\(=\sqrt{\left(x-3\right)^2}\)

\(=\left|x-3\right|\)

Với  \(x>3\)thì  \(\left|x-3\right|=x-3\)

Vậy ...