Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{6:\frac{3}{5}-1\frac{1}{6}\times\frac{6}{7}}{4\frac{1}{5}\times\frac{10}{11}+5\frac{2}{11}}\)
\(=\frac{\frac{6}{1}:\frac{3}{5}-\frac{7}{6}\times\frac{6}{7}}{\frac{21}{5}\times\frac{10}{11}\times\frac{57}{11}}\)
\(=\frac{\frac{6}{1}\times\frac{5}{3}-1}{\frac{210}{55}+\frac{57}{11}}\)
\(=\frac{\frac{30}{3}-1}{\frac{42}{11}+\frac{57}{11}}\)
\(=\frac{10-1}{\frac{99}{11}}\)
\(=\frac{9}{9}\)
\(=1\)
\(6:\frac{3}{5}-1\frac{1}{6}\)X \(\frac{6}{7}\) \(4\frac{1}{5}\)X \(\frac{10}{11}+5\frac{2}{11}\)
\(=\frac{33}{5}-\frac{7}{6}\)X \(\frac{6}{7}\) \(=\) \(\frac{21}{5}\)X \(\frac{10}{11}+\frac{57}{11}\)
\(=\frac{33}{5}-1\) \(=\frac{42}{11}+\frac{57}{11}\)
\(=\frac{28}{5}\) \(=\frac{99}{11}=9\)
1)
a) \(x+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}=5\)
\(x+\frac{64}{128}+\frac{32}{128}+\frac{16}{128}+\frac{8}{128}+\frac{4}{128}+\frac{2}{128}+\frac{1}{128}=5\)
\(x+\frac{127}{128}=5\)
\(x=5-\frac{127}{128}=\frac{513}{128}\)
b) \(x+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}=3\)
\(x+\frac{729}{2187}+\frac{243}{2187}+\frac{81}{2187}+\frac{27}{2187}+\frac{9}{2187}+\frac{3}{2187}+\frac{1}{2187}=3\)
\(x+\frac{2186}{2187}=3\)
\(x=3-\frac{2186}{2187}=\frac{4375}{2187}\)
2)
a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=1-\frac{1}{6}=\frac{5}{6}\)
b) \(5\frac{1}{2}+3\frac{5}{6}+\frac{2}{3}\)
\(=\left(5+3\right)+\left(\frac{1}{2}+\frac{2}{3}+\frac{5}{6}\right)\)
\(=8+\left(\frac{3}{6}+\frac{4}{6}+\frac{5}{6}\right)\)
\(=8+2=10\)
c) \(7\frac{7}{8}+1\frac{4}{6}+3\frac{3}{5}\)
\(=\left(7+1+3\right)+\left(\frac{7}{8}+\frac{2}{3}+\frac{3}{5}\right)\)
\(=11+\left(\frac{105}{120}+\frac{80}{120}+\frac{72}{120}\right)\)
\(=11+\frac{257}{120}=\frac{1577}{120}\)
3) Gọi số đó là x. Theo đề ta có :
\(\frac{16-x}{21+x}=\frac{5}{7}\)
\(7\left(16-x\right)=5\left(21+x\right)\)
\(112-7x=105+5x\)
\(112-105=7x-5x\)
\(7=2x\)
\(x=\frac{7}{2}=3,5\) ( vô lí )
Vậy không có số tự nhiên để thõa mãn điều kiện trên.
Đặt \(Q=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{400}{401}\)
Áp dụng tính chất \(\frac{a}{b}< \frac{a+m}{b+m}\left(a,b,m\inℕ^∗\right)\)ta có
\(\frac{1}{2}< \frac{1+1}{2+1}=\frac{2}{3}\)
\(\frac{2}{3}< \frac{2+1}{3+1}=\frac{3}{4}\)
...
\(\frac{399}{400}< \frac{399+1}{400+1}=\frac{400}{401}\)
\(\Rightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{399}{400}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{400}{401}\)
hay P < Q
=> \(P^2< P.Q\)
\(P^2< \frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{399}{400}.\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{400}{401}\)
\(P^2< \frac{1.2.3.4.....400}{2.3.4.5.....401}\)
\(P^2< \frac{1}{401}< \frac{1}{400}< \left(\frac{1}{20}\right)^2\)
Vì P và 1/20 có cùng dấu
\(\Rightarrow P< \frac{1}{20}\)
\(\frac{2}{3}.\frac{4}{5}+\frac{1}{3}.\frac{4}{5}=\frac{4}{5}\left(\frac{2}{3}+\frac{1}{3}\right)=\frac{4}{5}.\frac{3}{3}=\frac{4}{5}.1=\frac{4}{5}\)
\(\frac{1}{2}:\frac{3}{4}+\frac{1}{6}:\frac{3}{4}=\frac{3}{4}:\left(\frac{1}{2}+\frac{1}{6}\right)=\frac{3}{4}:\frac{2}{3}=\frac{9}{8}\)
\(\frac{2}{3}.\frac{4}{5}-\frac{1}{3}.\frac{4}{5}=\frac{4}{5}\left(\frac{2}{3}-\frac{1}{3}\right)=\frac{4}{5}.\frac{1}{3}=\frac{4}{15}\)
\(\frac{1}{2}:\frac{3}{4}-\frac{1}{6}:\frac{3}{4}=\frac{3}{4}:\left(\frac{1}{2}-\frac{1}{6}\right)=\frac{3}{4}:\frac{1}{3}=\frac{9}{4}\)
\(\frac{2}{3}.\frac{4}{5}+\frac{1}{3}.\frac{4}{5}=\left(\frac{2}{3}+\frac{1}{3}\right).\frac{4}{5}=1.\frac{4}{5}=\frac{4}{5}\)
\(\frac{1}{2}:\frac{3}{4}+\frac{1}{6}:\frac{3}{4}=\frac{1}{2}.\frac{4}{3}+\frac{1}{6}.\frac{4}{3}=\left(\frac{1}{2}+\frac{1}{6}\right).\frac{4}{3}=\frac{2}{3}.\frac{4}{3}=\frac{8}{9}\)
c,d tương tự
Lời giải:
Tổng 10 phân số đầu tiên là:
$\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{4}{96}+\frac{5}{204}+.....+\frac{10}{2679}$
$=\frac{1}{2.3}+\frac{2}{3.5}+\frac{3}{5.8}+\frac{5}{8.12}+\frac{5}{12.17}+\frac{6}{17.23}+\frac{7}{23.30}+\frac{8}{30.38}+\frac{9}{38.47}+\frac{10}{47.57}$
$=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{47}-\frac{1}{57}$
$=\frac{1}{2}-\frac{1}{57}=\frac{55}{114}$
Bài 2:
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{2004}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{2003}{2004}\)
\(=\frac{1}{2004}\)
Bài 1:
Ta thấy:
\(\frac{1}{2}>\frac{1}{6};\frac{1}{3}>\frac{1}{6};\frac{1}{4}>\frac{1}{6};\frac{1}{5}>\frac{1}{6};\frac{1}{6}=\frac{1}{6}\)
\(=>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}>\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}\)
\(=>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}>\frac{5}{6}\)
Bài 2:
Đặt \(A=\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+...+\frac{1}{1517}\)
Ta thấy \(\frac{1}{5}=\frac{1}{1.5};\frac{1}{45}=\frac{1}{5.9};\frac{1}{117}=\frac{1}{9.13}\)
Theo quy luật như vậy ta có các số tiếp theo là:
\(\frac{1}{13.17}=\frac{1}{221};\frac{1}{17.21}=\frac{1}{357};\frac{1}{21.25}=\frac{1}{525};\frac{1}{25.29}=\frac{1}{725};...\)
Ta có \(A=\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+...+\frac{1}{1517}\)
\(=>A=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{27.31}\)
\(=>4A=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{27.31}\)
\(=>4A=\frac{5-1}{1.5}+\frac{9-5}{5.9}+\frac{13-9}{9.13}+...+\frac{31-27}{27.31}\)
\(=>4A=\frac{5}{1.5}-\frac{1}{1.5}+\frac{9}{5.9}-\frac{5}{5.9}+\frac{13}{9.13}-\frac{9}{9.13}+...+\frac{31}{27.31}-\frac{27}{27.31}\)
\(=>4A=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{27}-\frac{1}{31}\)
\(=>4A=1-\frac{1}{31}=\frac{30}{31}=>A=\frac{30}{31}.\frac{1}{4}=\frac{15}{62}\)