Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(f\left(0\right)=c=1\)
\(f\left(1\right)=a+b+c=2\)
\(f\left(2\right)=4a+2b+c=8\)
\(\Rightarrow c=1,a=\frac{5}{2},b=\frac{-3}{2}\)
Vì vậy mà \(f\left(x\right)=\frac{5}{2}x^2-\frac{3}{2}x+1\)
nên \(f\left(-2\right)=\frac{5}{2}.\left(-2\right)^2-\frac{3}{2}.\left(-2\right)+1=14\)
Ta có: f(0)=a.02+b.0+c=c chia hết cho 3
=>c chia hết cho 3 (1)
Ta có: f(-1)=a(-1)2+b(-1)+c=a-b+c chia hết cho 3
Mà từ (1)
=>a-b chia hết cho 3 (2)
Khi x=1 ta có:
f(1)=a(1)2+b.1+c=a+b+c chia hết cho 3
Mà từ (1)
=>a+b chia hết cho 3 (3)
Từ (2) và (3)
=>(a-b)+(a+b)=2a chia hết cho 3
Mà (2;3)=1
=>a chia hết cho 3 (4)
Từ (2) và (3)
=>(a-b)-(a+b)=-2b chia hết cho 3
=>2b chia hết cho 3
Mà (3;2)=1
=>b chia hết cho 3 (5)
Từ (1);(4);(5)=>a;b;c chia hết cho 3
\(g\left(x\right)=ax^3-bx\)
\(f\left(x\right)=g\left(x\right)-15\)
\(f\left(-x\right)=-g\left(x\right)-15\)
\(f\left(x\right)+f\left(-x\right)=-30\)
\(f\left(5\right)+f\left(-5\right)=-30\Rightarrow f\left(-5\right)=-30-5=-35\)
\(f\left(-5\right)=-35\)
Ta có: \(f\left(0\right)=a.0^2+b.0+c=0+0+c=c\) mà \(f\left(0\right)=1\)\(\Rightarrow c=1\)
\(f\left(1\right)=a.1^2+b.1^2+c=a+b+1\)mà \(f\left(1\right)=2\)\(\Rightarrow a+b+1=2\)\(\Rightarrow a+b=1\)
\(f\left(2\right)=a.2^2+2.b+c=4a+2b+1\)mà \(f\left(2\right)=8\)\(\Rightarrow4a+2b+1=8\)\(\Rightarrow4a+2b=7\)\(\Rightarrow2\left(2a+b\right)=7\)\(\Rightarrow2a+b=3,5\)\(\Rightarrow a+\left(a+b\right)=3,5\)\(\Rightarrow a+1=3,5\)\(\Rightarrow a=2,5\)
Lại có: \(a+b=1\)\(\Rightarrow2,5+b=1\)\(\Rightarrow b=1-2,5=-1,5\)
Ta có: \(f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c=2,5.4+\left(-1.5\right).\left(-2\right)+1=10+3+1=14\)
Khi x=0, ta có : \(0+0+c=5\)
Khi x=1, ta có: \(a+b+c=10\)
Khi x=5, ta có: \(25a+5b+c=0\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{-3}{2}\\b=\dfrac{13}{2}\\c=5\end{matrix}\right.\)