K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B=\dfrac{\left(\dfrac{2}{5}\cdot5\right)^7+\left(\dfrac{9}{4}:\dfrac{3}{16}\right)^3}{2^7\cdot5^2+2^9}\)

\(=\dfrac{1+12^3}{2^7\left(5^2+2^2\right)}=\dfrac{\left(12+1\right)\left(12^2-12+1\right)}{2^7\cdot29}\)

\(=\dfrac{13\cdot133}{2^7\cdot29}=\dfrac{1729}{3712}\)

Bài 2: 

a: \(A=11+\dfrac{3}{13}-2-\dfrac{4}{7}-5-\dfrac{3}{13}\)

\(=4-\dfrac{4}{7}=\dfrac{24}{7}\)

b: \(B=6+\dfrac{4}{9}+3+\dfrac{7}{11}-4-\dfrac{4}{9}\)

\(=5+\dfrac{7}{11}=\dfrac{62}{11}\)

c: \(C=\dfrac{-5}{7}\left(\dfrac{2}{11}+\dfrac{9}{11}\right)+1+\dfrac{5}{7}=1\)

d: \(D=\dfrac{7}{10}\cdot\dfrac{8}{3}\cdot20\cdot\dfrac{3}{8}\cdot\dfrac{5}{28}\)

\(=\dfrac{20}{10}\cdot7\cdot\dfrac{8}{3}\cdot\dfrac{3}{8}\cdot\dfrac{5}{28}=2\cdot\dfrac{5}{4}=\dfrac{5}{2}\)

15 tháng 11 2017

1) \(A=1+2+2^2+2^3+......+2^{2015}\)

\(\Leftrightarrow2A=2+2^2+2^3+......+2^{2016}\)

\(\Leftrightarrow2A-A=\left(2+2^2+2^3+......+2^{2016}\right)-\left(1+2+2^2+2^3+......+2^{2015}\right)\)

\(\Leftrightarrow A=2^{2016}-1\)

Vậy \(A=2^{2016}-1\)

6)Ta có: \(13+23+33+43+.......+103=3025\)

\(\Leftrightarrow2.13+2.23+2.33+2.43+.......+2.103=2.3025\)

\(\Leftrightarrow26+46+66+86+.......+206=6050\)

\(\Leftrightarrow\left(23+3\right)+\left(43+3\right)+\left(63+3\right)+\left(83+3\right)+.......+\left(203+3\right)=6050\)

\(\Leftrightarrow23+43+63+83+.......+203+3.10=6050\)

\(\Leftrightarrow23+43+63+83+.......+203+=6050-30\)

\(\Leftrightarrow23+43+63+83+.......+203+=6020\)

Vậy S=6020

15 tháng 11 2017

b, B có 19 thừa số

=> \(-B=(1-\frac{1}{4})(1-\frac{1}{9})(1-\frac{1}{16})...(1-\frac{1}{400}) \)

<=>\(-B=\frac{(2-1)(2+1)(3-1)(3+1)(4-1)(4+1)...(20-1)(20+1)}{4.9.16...400} \)

<=>\(-B=\frac{(1.2.3.4...19)(3.4.5...21)}{(2.3.4.5.6...20)(2.3.4.5...20)} \)

<=>\(-B=\frac{21}{20.2} =\frac{21}{40} \)

<=>\(B=\frac{-21}{40} \)

20 tháng 4 2020

Đối với casio 580 VNX bấm \(Mode\rightarrow9\rightarrow1\rightarrow2\)

20 tháng 4 2020

a) - Đối với máy casio 570 VN Plus / 570 ES Plus : bấm \(Mode\rightarrow5\rightarrow1\) . Nhập các hệ số : \(a_1=\frac{3}{4};b_1=-\frac{7}{3};c_1=\frac{4}{5};a_2=\frac{2}{5};b_2=\frac{2}{7};c_2=\frac{2}{9}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\frac{1412}{2169}\\y=-\frac{161}{1205}\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}x=-\frac{913}{1064}\\y=\frac{167}{1064}\end{matrix}\right.\)

\(N=4\cdot16\cdot\dfrac{9}{16}\cdot\dfrac{4}{5}\cdot\dfrac{27}{8}=4\cdot9\cdot\dfrac{4}{5}\cdot\dfrac{27}{8}\)

\(=\dfrac{16}{5}\cdot\dfrac{243}{8}=\dfrac{486}{5}\)

7 tháng 4 2017

lời giải

a) \(\left\{{}\begin{matrix}-2x+\dfrac{3}{5}>\dfrac{2x-7}{3}\left(1\right)\\x-\dfrac{1}{2}< \dfrac{5\left(3x-1\right)}{2}\left(2\right)\end{matrix}\right.\)

(1)\(\Leftrightarrow\)

\(\dfrac{3}{5}+\dfrac{7}{3}>\left(\dfrac{2}{3}+2\right)x\)

\(\dfrac{44}{15}>\dfrac{8}{3}x\) \(\Rightarrow x< \dfrac{44.3}{15.8}=\dfrac{11}{5.2}=\dfrac{11}{10}\)

Nghiêm BPT(1) là \(x< \dfrac{11}{10}\)

(2) \(\Leftrightarrow2x-1< 15x-5\Rightarrow13x>4\Rightarrow x>\dfrac{4}{13}\)

Ta có: \(\dfrac{4}{13}< \dfrac{11}{10}\) => Nghiệm hệ (a) là \(\dfrac{4}{13}< x< \dfrac{11}{10}\)

8 tháng 4 2017

a) 6x + < 4x + 7 <=> 6x - 4x < 7 - <=> x <

< 2x +5 <=> 4x - 2x < 5 - <=> x <

Tập nghiệm của hệ bất phương trình:

Y = = .

b) 15x - 2 > 2x + <=> x >

2(x - 4) < <=> x < 2

Tập nghiệm S = ∩ (-∞; 2) =


AH
Akai Haruma
Giáo viên
19 tháng 12 2017

Câu a)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\geq \frac{9}{a+2b}\) (1)

\(\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\geq \frac{9}{b+2c}\)(2)

\(\frac{1}{c}+\frac{1}{a}+\frac{1}{a}\geq \frac{9}{c+2a}\) (3)

Lấy \((1)+2.(2)+3.(3)\) ta có:

\(\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{2}{b}+\frac{2}{c}+\frac{2}{c}+\frac{3}{c}+\frac{3}{a}+\frac{3}{a}\geq 9\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)

\(\Leftrightarrow \frac{7}{a}+\frac{4}{b}+\frac{7}{c}\geq 9\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c\)

AH
Akai Haruma
Giáo viên
19 tháng 12 2017

Câu b)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{a}+\frac{4}{b}\geq \frac{(1+2)^2}{a+b}=\frac{9}{a+b}\)

\(\Rightarrow \frac{1}{3a}+\frac{4}{3b}\geq \frac{3}{a+b}(1)\)

\(\frac{1}{3b}+\frac{1}{2c}+\frac{1}{2c}\geq \frac{9}{3b+4c}\)

\(\Rightarrow \frac{2}{3b}+\frac{2}{c}\geq \frac{18}{3b+4c}\) (2)

\(\frac{1}{c}+\frac{1}{3a}+\frac{1}{3a}\geq \frac{9}{c+6a}\) (3)

Từ (1); (2); (3) cộng theo vế:

\(\Rightarrow \frac{1}{a}+\frac{2}{b}+\frac{3}{c}\geq \frac{3}{a+b}+\frac{18}{3b+4c}+\frac{9}{c+6a}\)

(đpcm)

Dấu bằng xảy ra khi \(a=\frac{b}{2}=\frac{c}{3}\)

Câu c)

BĐT cần chứng minh tương đương với:
\(\frac{b+c+a}{a}+\frac{2a+c}{b}+\frac{4(a+b)}{a+c}\geq 10\) (*)

Áp dụng BĐT AM-GM:

\(\text{VT}=\frac{b}{a}+\frac{c+a}{2a}+\frac{c+a}{2a}+\frac{a}{b}+\frac{a+c}{2b}+\frac{a+c}{2b}+\frac{a+b}{a+c}+\frac{a+b}{a+c}+\frac{a+b}{a+c}+\frac{a+b}{a+c}\)

\(\geq 10\sqrt[10]{\frac{ba(c+a)^4(a+b)^4}{16a^3b^3(a+c)^4}}=10\sqrt[10]{\frac{(a+b)^4}{16a^2b^2}}\)

Theo AM-GM: \((a+b)^2\geq 4ab\Rightarrow (a+b)^4\geq 16a^2b^2\)

\(\Rightarrow \text{VT}\geq 10\sqrt[10]{\frac{(a+b)^4}{16a^2b^2}}\geq 10\)

Vậy (*) được cm. Ta có đpcm. Dấu bằng xảy ra khi a=b=c

3)a) Áp dụng BĐT Bunyakovsky 2 lần, ta có: \(\left(1+x^2\right)\left(1+y^2\right)\ge\left(x+y\right)^2\) \(\left(1+x^2\right)\left(1+y\right)^2\ge\left(1+xy\right)^2\) Nhân vế theo vế rồi khai phương ta được đpcm. b)...
Đọc tiếp

3)a) Áp dụng BĐT Bunyakovsky 2 lần, ta có:

\(\left(1+x^2\right)\left(1+y^2\right)\ge\left(x+y\right)^2\)

\(\left(1+x^2\right)\left(1+y\right)^2\ge\left(1+xy\right)^2\)

Nhân vế theo vế rồi khai phương ta được đpcm.

b) \(\dfrac{a^2+b^2}{ab}+\dfrac{\sqrt{ab}}{a+b}\ge\dfrac{\left(a+b\right)^2}{2ab}+\dfrac{4\sqrt{ab}}{a+b}+\dfrac{4\sqrt{ab}}{a+b}-\dfrac{7\sqrt{ab}}{a+b}\ge3\sqrt[3]{\dfrac{\left(a+b\right)^2}{2ab}.\dfrac{4\sqrt{ab}}{a+b}.\dfrac{4\sqrt{ab}}{a+b}}-\dfrac{7}{2}=3.2-\dfrac{7}{2}=\dfrac{5}{2}\)

Lưu ý: \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2};\dfrac{\sqrt{ab}}{a+b}\le\dfrac{1}{2}\)

1.2) \(a^3-3a^2+8a=9\Leftrightarrow\left(a-1\right)^3+5a-8=0\)

\(b^3-6b^2+17b=15\Leftrightarrow\left(b-2\right)^3+5b-7=0\)

Cộng vế theo vế, áp dụng HĐT cho 2 cái mũ 3 rồi suy ra được a+b=3

1.1 Phương trình tương đương \(x^2-2x+1=2-x\sqrt{x-\dfrac{1}{x}}\)

Chia cả 2 vế cho x, chuyển vế, rút gọn, ta được

\(\left(x-\dfrac{1}{x}\right)+\sqrt{x-\dfrac{1}{x}}-2=0\)

Đặt \(\sqrt{x-\dfrac{1}{x}}=t\ge0\) thì ta có:

\(t^2+t-2=0\Rightarrow\)Chọn t=1 vì \(t\ge0\)

\(\Rightarrow\sqrt{x-\dfrac{1}{x}}=1\) giải ra kết luận được 2 nghiệm \(x_1=\dfrac{1+\sqrt{5}}{2};x_2=\dfrac{1-\sqrt{5}}{2}\)

Bài 2: Bó tay nha con ngoan^^

Mấy CTV đừng xóa, để người cần đọc đã ;V

1
2 tháng 12 2017

Unruly Kid Rr :))

2 tháng 12 2017

:))

9 tháng 4 2017

\(A=\left(-1,5\right)^2\cdot2\dfrac{2}{3}-\dfrac{1}{6}+\left(\dfrac{4}{7}-\dfrac{2}{5}\right):1\dfrac{1}{35}\)

\(=\left(-\dfrac{3}{2}\right)^2\cdot\dfrac{8}{3}-\dfrac{1}{6}+\left(\dfrac{20}{35}-\dfrac{14}{35}\right):\dfrac{36}{35}\\ =\dfrac{9}{4}\cdot\dfrac{8}{3}-\dfrac{1}{6}+\dfrac{6}{35}\cdot\dfrac{35}{36}\\ =6-\dfrac{1}{6}+\dfrac{1}{6}\\ =6\)