Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{6}{19}\cdot\dfrac{-7}{11}+\dfrac{6}{19}\cdot\dfrac{-4}{11}+\dfrac{-13}{19}\)
\(B=\dfrac{6}{19}\cdot\left(-\dfrac{4}{11}+\dfrac{-7}{11}\right)+\dfrac{-13}{19}\)
\(B=\dfrac{6}{19}\cdot\left(-1\right)+\dfrac{-13}{19}\)
\(B=-\dfrac{6}{19}+\dfrac{-13}{19}=-\dfrac{19}{19}=-1\)
Vậy \(B=-1\)
\(\left(\dfrac{-2}{5}+\dfrac{3}{7}\right)-\left(\dfrac{4}{9}+\dfrac{12}{20}-\dfrac{13}{35}\right)+\dfrac{7}{35}\)
\(=-\dfrac{2}{5}+\dfrac{3}{7}-\dfrac{4}{9}-\dfrac{3}{5}+\dfrac{13}{35}+\dfrac{7}{35}\\ =\left(-\dfrac{2}{5}-\dfrac{3}{5}\right)+\left(\dfrac{13}{35}+\dfrac{7}{35}+\dfrac{3}{7}\right)-\dfrac{4}{9}\\ =-1+\left(\dfrac{4}{7}+\dfrac{3}{7}\right)-\dfrac{4}{9}\\ =-1+1-\dfrac{4}{9}\\ =-\dfrac{4}{9}\)
Lời giải:
Giả sử \(\log _{3}a=\log_4b=\log_{12}c=\log_{13}(a+b+c)=t\)
\(\Rightarrow 13^t=3^t+4^t+12^t\)
\(\Rightarrow \left ( \frac{3}{13} \right )^t+\left ( \frac{4}{13} \right )^t+\left ( \frac{12}{13} \right )^t=1\)
Xét vế trái , đạo hàm ta thấy hàm luôn nghịch biến nên phương trình có duy nhất một nghiệm \(t=2\)
Khi đó \(\log_{abc}144=\log_{144^t}144=\frac{1}{t}=\frac{1}{2}\)
Đáp án B
cho em hỏi tại sao lại có 3^t +4^t +12^t=13^t. Với lại em không hiểu chỗ tại sao hàm số nghịch biến. Và tại sao từ \(\log_{abc}144=\log144_{144^t}=\dfrac{1}{t}\)
Lời giải:
Ta có \(A=\frac{a^{\frac{1}{3}}-a^{\frac{7}{3}}}{a^{\frac{1}{3}}-a^{\frac{4}{3}}}-\frac{a^{\frac{1}{3}}-a^{\frac{5}{3}}}{a^{\frac{2}{3}}+a^{\frac{1}{3}}}\)
\(=\frac{\sqrt[3]{a}-\sqrt[3]{a^7}}{\sqrt[3]{a}-\sqrt[3]{a^4}}-\frac{\sqrt[3]{a}-\sqrt[3]{a^5}}{\sqrt[3]{a^2}+\sqrt[3]{a}}\)
\(=\frac{\sqrt[3]{a}(1-a^2)}{\sqrt[3]{a}(1-a)}-\frac{\sqrt[3]{a}(1-\sqrt[3]{a^4})}{\sqrt[3]{a}(1+\sqrt[3]{a})}=\frac{1-a^2}{1-a}-\frac{1-\sqrt[3]{a^4}}{1+\sqrt[3]{a}}\)
\(=1+a-\frac{1-\sqrt[3]{a^4}}{1+\sqrt[3]{a}}\)
Đặt \(\sqrt[3]{a}=t\Rightarrow A=1+t^3-\frac{1-t^4}{1+t}=1+t^3-\frac{(1-t^2)(1+t^2)}{1+t}\)
\(=1+t^3-\frac{(1-t)(1+t)(1+t^2)}{1+t}=1+t^3-(1-t)(1+t^2)\)
\(=2t^3-t^2+t\)
\(\left(1+\dfrac{1}{2x}\right).lg3+lg2=lg\left(27-3^{\dfrac{1}{x}}\right)\)
\(\Leftrightarrow lg3^{1+\dfrac{1}{2x}}+lg2=lg\left(27-3^{\dfrac{1}{x}}\right)\)
\(\Leftrightarrow lg\left(2.3^{1+\dfrac{1}{2x}}\right)=lg\left(27-3^{\dfrac{1}{x}}\right)\)
\(\Leftrightarrow2.3^{1+\dfrac{1}{2x}}=27-3^{\dfrac{1}{x}}\)
\(\Leftrightarrow2.3.\left(3^{\dfrac{1}{x}}\right)^2=27-3^{\dfrac{1}{x}}\)
Đặt \(3^{\dfrac{1}{x}}=t\left(t>0\right)\) phương trình trở thành:
\(2.3t^2=27-t\)
\(\Leftrightarrow\left[{}\begin{matrix}t_1=\dfrac{-1-\sqrt{649}}{12}\left(l\right)\\t_2=\dfrac{1+\sqrt{649}}{12}\left(tm\right)\end{matrix}\right.\)
Với \(t=\dfrac{-1-\sqrt{649}}{12}\Leftrightarrow3^{\dfrac{1}{x}}=\dfrac{-1-\sqrt{649}}{12}\)
\(\Leftrightarrow\dfrac{1}{x}=log^{\dfrac{-1-\sqrt{649}}{12}}_3\)
\(\Leftrightarrow x=log^3_{\dfrac{-1-\sqrt{649}}{12}}\).
a) \(\left(\dfrac{1}{16}\right)^{-\dfrac{3}{4}}+810000^{0.25}-\left(7\dfrac{19}{32}\right)^{\dfrac{1}{5}}\)
\(=\left(\dfrac{1}{2}\right)^{4.\left(-\dfrac{3}{4}\right)}+\left(30\right)^{4.0,25}-\left(\dfrac{243}{32}\right)^{\dfrac{1}{5}}\)
\(=\left(\dfrac{1}{2}\right)^{-3}+30-\left(\dfrac{3}{2}\right)^{5.\dfrac{1}{5}}\)
\(=2^3+30-\dfrac{3}{2}\)
\(=36,5\)
b) \(=\left(0,1\right)^{3.\left(-\dfrac{1}{3}\right)}-2^{-2}.2^{6.\dfrac{2}{3}}-\left[\left(2\right)^3\right]^{-\dfrac{4}{3}}\)
\(=0,1^{-1}-2^2-2^{-4}\)
\(=10-4-\dfrac{1}{16}\)
\(=\dfrac{95}{16}\)
B=5/7(-4/13+7/13-3/13)=5/7x0=0