Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Gọi a,b,c,d lần lượt là số hs khối 6,7,8,9 \(\left(a,b,c,d\in N^{sao}\right)\)
Theo đề bài ta có:
\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}\) và \(b-d=70\)
Theo tính chất dãy tính số bằng nhau
Ta có: \(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}=\frac{b-d}{8-6}=\frac{70}{2}=35\)
Từ \(\frac{a}{9}=35\Rightarrow a=315\)
\(\frac{b}{8}=35\Rightarrow b=280\)
\(\frac{c}{7}=35\Rightarrow c=245\)
\(\frac{d}{6}=35\Rightarrow d=210\)
Vậy 315, 280, 245, 210 lần lượt là số hs khối 6,7,8,9
Gọi a,b,c,d lần lượt là số học sinh của 4 khối 6,7,8,9 ( a,b,c,d >0)
Ta có: a/9=b/8=c/7=d/6 và a-c=90
Áp dụng dãy tỉ số bằng nhau:
a/9=b/8=c/7=d/6=a-c/9-7=70/2=35
=> 9=35=> a=9.35=315 học sinh
8=35=> b=8.35=280 học sinh
7=35=> c=7.35=245 học sinh
6=35=> d=6.35=210 học sinh
vậy số học sinh các khối 6,7,8,9 lần lượt là 210 học sinh; 245 học sinh; 280 học sinh; 315 học sinh.
\(\text{Câu 1: }\\ \text{Theo bài ra ta có : }x+y-z=10\\ \dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{2}=\dfrac{4y}{12}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\left(1\right)\\ \dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{3y}{12}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\left(2\right)\\ \text{Từ }\left(1\right)\text{ và }\left(2\right)\text{ suy ra : }\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\\ \text{ Áp dụng tính chất dãy tỉ số bằng nhau ta được : }\\ \dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=2\Rightarrow x=16\\\dfrac{y}{12}=2\Rightarrow y=24\\\dfrac{z}{15}=2\Rightarrow z=30\end{matrix}\right.\\ \text{Vậy }x=16\\ y=24\\ z=30\)
\(\text{Câu 2 : }\\ \text{Ta có : }\dfrac{x}{2}=\dfrac{y}{5}\\ \Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{5}\right)^2=\dfrac{x}{2}\cdot\dfrac{y}{5}=\dfrac{xy}{2\cdot5}=\dfrac{7+3}{10}=\dfrac{10}{10}=1\\ \Rightarrow\left\{{}\begin{matrix}\left(\dfrac{x}{2}\right)^2=1\Rightarrow\dfrac{x}{2}=1\Rightarrow x=2\\\left(\dfrac{y}{5}\right)^2=1\Rightarrow\dfrac{y}{5}=1\Rightarrow y=5\end{matrix}\right.\\ \text{Vậy }x=2\\ y=5\)
Câu 3 : \(\dfrac{\text{Giải}}{ }\)
Gọi số học sinh 4 khối \(6,7,8,9\) lần lượt là \(a;b;c;d\) \(\left(a;b;c;d\in N\text{*}\right)\) \(\left(em\right)\)
Theo bài ra ta có : \(b-d=70\)
\(a;b;c;d\) tỉ lệ với \(9;8;7;6\) \(\Rightarrow\dfrac{a}{9}=\dfrac{b}{8}=\dfrac{c}{7}=\dfrac{d}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{a}{9}=\dfrac{b}{8}=\dfrac{c}{7}=\dfrac{d}{6}=\dfrac{b-d}{8-6}=\dfrac{70}{2}=35\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{9}=35\Rightarrow a=315\\\dfrac{b}{8}=35\Rightarrow b=280\\\dfrac{c}{7}=35\Rightarrow c=245\\\dfrac{d}{6}=35\Rightarrow d=210\end{matrix}\right.\)
\(\text{Vậy }a=315\\ b=280\\ c=245\\ d=210\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(\text{điều phải chứng minh}\right)\)
\(a.9\cdot3^2\cdot\frac{1}{81}=\frac{3^2.3^2.1}{3^4}=\frac{3^4}{3^4}=1\)
\(b.2\frac{1}{2}+\frac{4}{7}:\left(\frac{-8}{9}\right)\)
\(=\frac{5}{2}+\frac{4}{7}.\left(\frac{-9}{8}\right)\)
\(=\frac{5}{2}+\frac{-9}{14}=\frac{13}{7}\)
\(c.3,75.\left(7,2\right)+2,8.\left(3,75\right)\)
\(=3,75.\left(7,2+2,8\right)\)
\(=3,75.10=37,5\)
\(d.\left(\frac{-5}{13}\right).\frac{3}{7}+\left(\frac{-8}{13}\right).\frac{3}{7}+\left(\frac{-4}{7}\right)\)
\(=\frac{3}{7}.\left[\left(\frac{-5}{13}\right)+\left(\frac{-8}{13}\right)\right]+\left(\frac{-4}{7}\right)\)
\(=\frac{3}{7}.\left(-1\right)+\frac{-4}{7}\)
\(=\frac{-3}{7}+-\frac{4}{7}=-1\)
\(e.\sqrt{81}-\frac{1}{8}.\sqrt{64}+\sqrt{0,04}\)
\(=9-\frac{1}{8}.8+0,2\)
\(=9-1+0,2=8+0,2=8,2\)
Gọi số hs TB ;K ;G lần lượt là a (hs) ;b(ks) ;c(hs) (a;b;c >0)
Ta có : a+b+c=48
a = b \(\Rightarrow\dfrac{a}{2}=\dfrac{b}{2}\)
b = 2c\(\Rightarrow\dfrac{c}{1}=\dfrac{b}{2}\)
\(\Rightarrow\dfrac{a}{2}=\dfrac{b}{2}=\dfrac{c}{1}\)
Áp dụng tính chất của dãy tỉ số bằng nhâu ,ta có :
\(\Rightarrow\dfrac{a}{2}=\dfrac{b}{2}=\dfrac{c}{1}=\dfrac{a+b+c}{2+2+1}=\dfrac{48}{5}\) (Sai đề)
6) Tìm giá trị lớn nhất : A = 0,5 - | x - 3,5 |
Vì | x - 3,5 | \(\ge\) 0
nên A= 0,5 - | x - 3,5 | \(\le\) 0,5
GTLN của A là 0,5 khi và chỉ khi x-3,5= 0
=> x= 3,5
5) Tìm x thuộc Q :(x +1)(x-2) < 0
Để (x +1)(x-2) \(\in Q\)
Thì x+1 và x-2 khác dấu
mà ta thấy x+1 > x-2 ( luôn luôn xảy ra)
=> x+1\(\ge\)0 => x= -1
x-2\(\le\) 0 => x= 2
Vậy -1 <x <2
vậy: x \(\in\) 0;1
bài 4:
gọi x. y, z, k lần lượt là số học sinh khối 6, 7, 8,9
theo đề ta có:
\(\dfrac{x}{11}=\dfrac{y}{10}=\dfrac{z}{9}=\dfrac{k}{8}\) và y-k= 22
=> \(\dfrac{x}{11}=\dfrac{y}{10}=\dfrac{z}{9}=\dfrac{k}{8}\)= \(\dfrac{y-k}{10-8}=\dfrac{22}{2}=11\)
=> x= 121
y= 110
z= 99
k= 88
Vậy khối 6, 7, 8, 9 có..............................
Gọi số học sinh bốn khối 6,7,8,9 lần lượt là $a$; $b$; $c$; $d$, với $a$; $b$; $c$; $d \in \mathbb{N}^*$ .
Số học sinh khối 6 nhiều hơn khối 9 là $30$ học sinh thì $a - d = 30$.
Số học sinh bốn khối 6,7,8,9 tỉ lệ với $9$; $8$; $7$; $6$ nên:
$a : b: c : d = 9:8:7:6$ hay $\dfrac a9 = \dfrac b8 = \dfrac c7 = \dfrac d6 = \dfrac{a-d}{9-6} = \dfrac{30}3 = 10$.
Từ đó, em suy ra số học sinh mỗi khối. Ví dụ số học sinh khối 6 là: $a = 10.9 = 90$ (học sinh).