Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x là số bạn nam trong lớp 7a
Gọi y là số bạn nữ trong lớp 7a
Đk (0<x<65)
Vì trong lớp 7a có 65 bạn nên ta có PT
X+y= 65 (1)
1/3 Số học sinh nam bằng 2/7 số học sinh nữ lên ta có PT
1/3x = 2/7y <=> 1/3x -2/7y=0 (2)
Từ 1 và 2 ta có hệ PT
X+y=65
1/3x -2/7y =0
Giải hệ PT ta được X=30; Y=35
Câu 3:
Gọi số học sinh khối 6;7;8 lần lượt là a,b,c
Theo đề, ta có: \(\dfrac{2}{3}a=\dfrac{1}{4}b=\dfrac{3}{5}c\)
=>40a=15b=36c
=>a/9=b/24=c/10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{9}=\dfrac{b}{24}=\dfrac{c}{10}=\dfrac{b-a-c}{24-19}=\dfrac{30}{5}=6\)
=>a=54; b=144; c=60
Bài 4: bạn tham khảo ở đây: https://olm.vn/hoi-dap/question/149762.html
Bài 6: bạn tham khảo ở đây: https://olm.vn/hoi-dap/question/656310.html
Bạn kham khảo nha:
Bài 1: Câu hỏi của Lê Thị Bích Tuyền - Toán lớp 7 - Học toán với OnlineMath
Bài 2: Câu hỏi của mai pham nha ca - Toán lớp 7 - Học toán với OnlineMath
Bài 3: Câu hỏi của Nguyễn Ngọc Khánh - Toán lớp 7 - Học toán với OnlineMath
Bài 4: Câu hỏi của tran gia nhat tien - Toán lớp 7 - Học toán với OnlineMath
Bài 5: Câu hỏi của Đặng Kim Nguyên - Toán lớp 7 - Học toán với OnlineMath
Bài 6: Câu hỏi của Saito Haijme - Toán lớp 7 - Học toán với OnlineMath
Bài 1:
\(\text{Giả sử: }\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=k\)
\(\Rightarrow x=2k;y=4k;z=6k\)
Thay vào: x-y +z= 2k- 4k+ 6k= 8
= 4k= 8
=> k= \(\frac{8}{4}=2\)
=> x= 2. 2= 4
y= 4. 2= 8
z= 6.2 = 12
Vậy \(\begin{cases}x=4\\y=8\\z=12\end{cases}\)
Bài 2:
Giải:
Gọi số học sinh 4 khối 6, 7, 8, 9 là a, b, c, d ( a,b,c,d thuộc N* )
Ta có: \(\frac{a}{3}=\frac{b}{3,5}=\frac{c}{4,5}=\frac{d}{4}\) và a + b + c + d = 660
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{3,5}=\frac{c}{4,5}=\frac{d}{4}=\frac{a+b+c+d}{3+3,5+4,5+4}=\frac{660}{15}=44\)
+) \(\frac{a}{3}=44\Rightarrow a=132\)
+) \(\frac{b}{3,5}=44\Rightarrow b=154\)
+) \(\frac{c}{4,5}=44\Rightarrow c=198\)
+) \(\frac{d}{4}=44\Rightarrow d=176\)
Vậy khối 6 có 132 học sinh
khối 7 có 154 học sinh
khối 8 có 198 học sinh
khối 9 có 176 học sinh
Bài 1
a )I x + 3/4 I - 1 : 3 = 2/3
l x + 3/4 l - 1/3 = 2/3
l x + 3/4 l = 2/3 + 1/3
l x + 3/4 l = 1
TH1 : x + 3/4 = 1 => x = 1 - 3/4 => x = 1/4
TH2 : x + 3/4 = -1 => x = -1 - 3/4 => x = -7/4
Vậy x = 1/4 ; -7/4
b) (x - 1/3 ) = 4/9
x = 4/9 + 1/3
x = 7/9
c) ko biết làm
d) x/4 = y/8 và x.y = 8
Áp dụng tính chất DTSBN,có:
x/4 . y/8 = x.y/4.8 = 1/4
=> x/4 = 1/4 => x = 1/4 . 4 => x=1
=> y/8 = 1/4 => x = 1/4 . 8 => x=2
Bài 2
Gọi số HS khối 6,7,8 lần lượt là: a,b,c
Theo đề bài ra,ta có : a/8 = b/7 = c/6 và a-c=140
=>a-c/8-6 = 70
=> a = 8.70 = 560
b = 7.70 = 490
c = 6.70 = 420
câu 1 ko bt
Câu 2 :
Gọi độ dài của các cạnh tam giác lần lượt là ,x,y,z.
Vì các cạnh của tam giác tỉ lệ thuận với 3,4,5 nên ta có :
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}\)
= \(\dfrac{60}{12}=5\)
Với : \(\dfrac{x}{3}=5\Rightarrow x=15\)
Với : \(\dfrac{y}{4}=5\Rightarrow y=20\)
Với : \(\dfrac{z}{5}=5\Rightarrow z=25\)
Vậy độ dài của các cạnh trong tam giác lần lượt là : 15 cm ; 20 cm ; 25 cm
Câu 4:
Gọi số hs mỗi khối lần lượt là a,b,c, d
Vì số hs của 4 khối tỉ lệ thuận vs 15;14;12 nên ta có :
\(\dfrac{a}{15}=\dfrac{b}{14}=\dfrac{c}{12}\) mà số hs khối 8 it hơn số hs khối 7 nên : b - c = 66 (hs)
=> \(\dfrac{a}{15}=\dfrac{b}{14}=\dfrac{c}{12}\Rightarrow\dfrac{b-c}{14-12}=\dfrac{66}{2}=33\)
Với : \(\dfrac{a}{15}=66\Rightarrow a=990\)
\(\dfrac{b}{14}=66\Rightarrow b=924\)
Do b - c = 66 => 924 - 66 =858
mk chỉ lm đc thế này th chắc sai r đó xl bn nhìu
Câu 1
Vì x và y tỉ lệ nghịch với 5 và 3
\(\Rightarrow\) 5x = 3y = \(\dfrac{x}{3}=\dfrac{y}{5}\) = \(\dfrac{x}{6}=\dfrac{y}{10}\) = \(\dfrac{2x}{12}=\dfrac{3y}{30}\) (1)
Vì y và z tỉ lệ thuận với 10 và 3
\(\Rightarrow\) \(\dfrac{y}{10}=\dfrac{z}{3}\) = \(\dfrac{3y}{30}=\dfrac{4z}{12}\) (2)
Từ (1) và (2) \(\Rightarrow\)\(\dfrac{2x}{12}=\dfrac{3y}{30}\) \(=\dfrac{4z}{12}\)
Mà 2x + 3y + 4z = -54
Theo tính chất dãy tỉ số bằng nhau, ta có :
\(\dfrac{2x}{12}=\dfrac{3y}{30}\)\(=\dfrac{4z}{12}\) = \(\dfrac{2x+3y+4z}{12+30+12}\) = \(\dfrac{-54}{54}\) = -1
Do đó : \(\dfrac{2x}{12}=-1\Rightarrow x=-1.12:2=-6\)
\(\dfrac{3y}{30}=-1\Rightarrow y=-1.30:3=-10\)
\(\dfrac{4z}{12}=-1\Rightarrow z=-1.12:4=-3\)
Vậy x = -6 ;y = -10 ; z = -3
1.
Theo bài ra ta có:
\(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}\) và x + y - z = 10
Ta có:
\(\frac{x}{8}=\frac{y}{12},\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
Suy ra:
x = 2 . 8 = 16
y = 2 . 12 = 24
z = 2 . 15 = 30
2/
Đặt \(\frac{x}{2}=\frac{y}{5}=k\)
Ta có :x = 2k ; y = 5k
=>x . y = 2k . 5k = 10k2 = 10 => k2 = 1 => k = ±1
Thay k = 1 ta có : x = 2 . 1 = 2 ; y = 5 . 1 = 5
Thay k = -1 ta có : x = 2 . (-1) = -2 ; y = 5 . (-1) = -5
Vậy x = ±2 ; y = ±5
3/
Giải:
Gọi số học sinh khối 6,7,8,9 lần lượt là a,b,c,d .
Theo bài ra ta có:
\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}\) và b - d = 70
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}=\frac{b-d}{8-6}=\frac{70}{2}=35\)
Suy ra :
a = 35 . 9 = 315
b = 35 . 8 = 280
c = 35 . 7 = 245
d = 35 . 6 = 210
Vậy số học sinh khối 6,7,8,9 lần lượt là 315;280;245;210 .
Giả sử đại lượng y tỉ lệ vs đại lượng x theo hệ số tỉ lệ là k (k ≠ 0 )
⇒ y = xk (1)
Thay x = 4 và y = 12 vào (1) ta có
12 = 4.k
=> k = 3 ( thỏa mãn k khác 0 )
Vậy k = 3
b) Thay k = 3 vào (1) ta có y = 3x
Vậy y = 3x
c) Thay x = - 2 vào công thức y = 3x ta có
y = 3 . ( - 2 )
=> y = - 6
Vậy x = - 2 <=> y = - 6
Thay x = 6 vào công thức y = 3x ta có
y = 6 . 3 = 18
Vậy x = 6 <=> y = 18
## Học tốt
Bài 1:
a) Giả sử đại lượng y tỉ lệ vs đại lượng x theo hệ số tỉ lệ là k (k ≠ 0 )
⇒ y = xk (1)
Thay x = 4 và y = 12 vào (1) ta có
12 = 4.k
=> k = 3 ( thỏa mãn k khác 0 )
Vậy k = 3
b) Thay k = 3 vào (1) ta có y = 3x
Vậy y = 3x
c) Thay x = - 2 vào công thức y = 3x ta có
= 3 . ( - 2 )
=> y = - 6
Vậy x = - 2 <=> y = - 6
Thay x = 6 vào công thức y = 3x ta có
y = 6 . 3 = 18
Vậy x = 6 <=> y = 18
Bài 3:
gọi khối lượng của hai thanh chì là m1 và m2 ( gam )
Do khối lượng và thể tích của vật thể là hai đại lượng tỉ lệ thuận với nhau
⇒ \(\frac{m_1}{12}=\frac{m_2}{17}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{m_1}{12}=\frac{m_2}{17}=\frac{m_1+m_2}{12+17}=\frac{56,5}{5}=11,3\)
\(\Rightarrow m_1=135,6\)
\(m_2=192,1\)
Vậy.......................................
Câu 1 :
Gọi số đo của 3 cạnh là : a ; b và c ( cm )
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{c-a}{7-3}=\dfrac{8}{4}=2\)
Vậy a = 6
b = 10
c = 14
Câu 4 :
Nửa chu vi mảnh đất hình chữ nhật là:
70 : 2 = 35 ﴾m﴿
Tổng số phần bằng nhau là:
3 + 4 = 7 ﴾ phần﴿
Chiều dài mảnh đất hình chữ nhật là:
35 : 7 x 4 = 20 ﴾m﴿
Chiều rộng mảnh đất hình chữ nhật là:
35 : 7 x 3 = 15 ﴾m﴿
Diện tích mảnh đất hình chữ nhật là:
20 x 15 = 300 ﴾m2)
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2
Do đó: x=16; y=24; z=30
\(\text{Câu 1: }\\ \text{Theo bài ra ta có : }x+y-z=10\\ \dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{2}=\dfrac{4y}{12}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\left(1\right)\\ \dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{3y}{12}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\left(2\right)\\ \text{Từ }\left(1\right)\text{ và }\left(2\right)\text{ suy ra : }\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\\ \text{ Áp dụng tính chất dãy tỉ số bằng nhau ta được : }\\ \dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=2\Rightarrow x=16\\\dfrac{y}{12}=2\Rightarrow y=24\\\dfrac{z}{15}=2\Rightarrow z=30\end{matrix}\right.\\ \text{Vậy }x=16\\ y=24\\ z=30\)
\(\text{Câu 2 : }\\ \text{Ta có : }\dfrac{x}{2}=\dfrac{y}{5}\\ \Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{5}\right)^2=\dfrac{x}{2}\cdot\dfrac{y}{5}=\dfrac{xy}{2\cdot5}=\dfrac{7+3}{10}=\dfrac{10}{10}=1\\ \Rightarrow\left\{{}\begin{matrix}\left(\dfrac{x}{2}\right)^2=1\Rightarrow\dfrac{x}{2}=1\Rightarrow x=2\\\left(\dfrac{y}{5}\right)^2=1\Rightarrow\dfrac{y}{5}=1\Rightarrow y=5\end{matrix}\right.\\ \text{Vậy }x=2\\ y=5\)
Câu 3 : \(\dfrac{\text{Giải}}{ }\)
Gọi số học sinh 4 khối \(6,7,8,9\) lần lượt là \(a;b;c;d\) \(\left(a;b;c;d\in N\text{*}\right)\) \(\left(em\right)\)
Theo bài ra ta có : \(b-d=70\)
\(a;b;c;d\) tỉ lệ với \(9;8;7;6\) \(\Rightarrow\dfrac{a}{9}=\dfrac{b}{8}=\dfrac{c}{7}=\dfrac{d}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{a}{9}=\dfrac{b}{8}=\dfrac{c}{7}=\dfrac{d}{6}=\dfrac{b-d}{8-6}=\dfrac{70}{2}=35\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{9}=35\Rightarrow a=315\\\dfrac{b}{8}=35\Rightarrow b=280\\\dfrac{c}{7}=35\Rightarrow c=245\\\dfrac{d}{6}=35\Rightarrow d=210\end{matrix}\right.\)
\(\text{Vậy }a=315\\ b=280\\ c=245\\ d=210\)