Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé!
À mà mình chỉ giải cho bạn câu 1 và 2 thôi câu 3 mình đang suy nghĩ hình rối quá
1) Gọi AD và BE lần lượt là hai đường cao của \(\Delta\) ABC .
Theo đề hai đường cao AD và BE cắt nhau tại H hay H là trực tâm của \(\Delta\) ABC
=> CH là đường cao thứ 3 của \(\Delta\) ABC
=> CH \(\perp\) AB (1)
mà BD \(\perp\) AB (gt) => CH//BD
Có BH \(\perp\) AC (BE là đường cao)
CD \(\perp\) AC
=> BH//CD (2)
Từ (1) và (2) suy ra : Tứ giác BHCD là hình bình hành
2) Có BHCD là hình bình hành nên 2 đường chéo cắt nhau tại trung điểm mỗi đường mà M là trung điểm của BC => M cũng là trung điểm của HD hay HM = DM
Có O là trung điểm của AD hay OA = OD
Xét \(\Delta\) AHD có:
HM = DM
OA = OD
=> OM là đường trung bình của \(\Delta\) AHD
=> OM = \(\frac{1}{2}\) AH hay AH = 2 OM
XONG !!
1a/IM vuông góc AB=>AMI=90 do
IN vuông góc AC=>ANI=90 do
△ABC vuông tại A=>BAC=90 do
=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật
1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)
Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)
Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi
2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H
=> AM=MB VA EM=MH hay AB giao voi EH tai TD M
=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn
2b/Co AEBH la hcn=>EH=AB
+) Mà AB=AC=>EH=AC(1)
+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.
Co goc BAH=1/2 EAH ; góc AHE=1/2AHB
Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.
Mà 2 góc này ở vị trí SLT=> EH//AC(2)
Từ (1) va (2)=>tg AEHC la hbh
Hướng giải:
a) Hình chữ nhật : dấu hiệu tứ giác có 3 góc vuông là hình chữ nhật
b) C/m IN là đg tb của tam giác ABC => NA = NC
Tứ giác ADCI là hình thoi: dấu hiệu hai đg chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường
c) BC cắt DC tại C chứ. (hai đoạn này chỉ có 1 điểm chung)
*CHÚ Ý: phía trên ko phải là bài giải. Chỉ lả gợi ý giải.
a) △ AKB ~ △AIC (g - g) ( ˆK=ˆI=900;K^=I^=900;ˆAA^ chung) (3)
⇒ ˆACI=ˆABKACI^=ABK^
⇒ 900−ˆACI=900−ˆABK900−ACI^=900−ABK^
⇒ ˆHCD=ˆHBDHCD^=HBD^ (1)
xét tứ giác AKHI có
ˆKHI=3600−ˆA−ˆHKA−ˆHIA=1800−ˆAKHI^=3600−A^−HKA−^HIA^=1800−A^
tương tự ˆD=1800−ˆAD^=1800−A^
⇒ ˆKHI=ˆDKHI^=D^ (2)
từ (1) và (2) ⇒ BHCD là hình bình hành
b) từ (3) ⇒ AIAK=ACABAIAK=ACAB (4)
⇒ AI.AB = AK.AC
c) xét △AKI và △ABC có
ˆAA^ chung; (4)
⇒ △AKI ~ △ABC (c-g-c)
d) gọi K là giao của DH và BC
vì A,D,H thăng hàng và H là trực tâm nên AD ⊥ BC hay HD ⊥ BC
⇒ BDCH là hình thoi
⇒ KC = KB
⇒ △ ABK = △ ACK (c-g-c)
⇒ △ ABC cân tại A
vậy △ ABC cân tại A thì DH đi qua A và BHCD là hình thoi
nó bị lỗi mk gửi lại
a) △ AKB ~ △AIC (g - g) ( ˆK=ˆI=900,ˆAA^ chung) (3)
⇒ ˆACI=ˆABK
⇒ 900−ˆACI=900−ˆABK
⇒ ˆHCD=ˆHBD (1)
xét tứ giác AKHI có
ˆKHI=3600−ˆA−ˆHKA−ˆHIA=1800−ˆA
tương tự ˆD=1800−ˆAD^=1800−A^
⇒ ˆKHI=ˆD (2)
từ (1) và (2) ⇒ BHCD là hình bình hành
b) từ (3) ⇒ AI/AK=AC/AB (4)
⇒ AI.AB = AK.AC
c) xét △AKI và △ABC có
ˆAA^ chung; (4)
⇒ △AKI ~ △ABC (c-g-c)
d) gọi K là giao của DH và BC
vì A,D,H thăng hàng và H là trực tâm nên AD ⊥ BC hay HD ⊥ BC
⇒ BDCH là hình thoi
⇒ KC = KB
⇒ △ ABK = △ ACK (c-g-c)
⇒ △ ABC cân tại A
vậy △ ABC cân tại A thì DH đi qua A và BHCD là hình thoi
a, Xté tứ giác AMIN có :
BMI=MAN=INA=900
=> Tứ giác AMIN là hình chữ nhật
b, Xét ΔABC
có : BI=IC ( gt)
IN // AM ( gt )
=> AN=NC
mà IN=ND
=> Tứ giác ADCI là hình bình hành (1)
mà INC = 900 (2) Từ (1) và (2) => ADCI là hình thoi
c, Kẻ IQ // BK (QϵCD)
ΔBKC có :
BI = IC (gt)
IQ // BK (cách dựng )
cm tương tự : DK=KQ
=> DK=KQ=QC
=> DK/DC = 1/3