Bài toán 11 : Tính tổng sau.

 a,S = 4 +...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Tổng các só hạng là:

(2017−4):3+1=672(2017−4):3+1=672(số hạng)

Tổng S là:

(2017+4).672:2=679056(2017+4).672:2=679056

b) Tổng các số hạng là:

(95−35):3+1=21(95−35):3+1=21(số hạng )

Tổng S là:

(95+35).21:2=1365(95+35).21:2=1365

HT

TL

a. 679056 b.1365 c.2430

HT

11 tháng 3 2020

Công thức tính : +) số số hạng : (số lớn nhất - số bé nhất) : khoảng cách + 1

+) tổng : (số bé nhất+ số lớn nhất) . số số hạng : 2

a) Số số hạng của S là : (2017-4):3+1=672 (số)

Tổng là : (4+2017).672:2=679056

Phần b và c làm tương tự.

a) Tổng các só hạng là:

\(\left(2017-4\right):3+1=672\)(số hạng)

Tổng S là:

\(\left(2017+4\right).672:2=679056\)

b) Tổng các số hạng là:

\(\left(95-35\right):3+1=21\)(số hạng )

Tổng S là:

\(\left(95+35\right).21:2=1365\)

c) tổng các số hạng là:

\(\left(98-10\right):2+1=45\)( số hạng )

Tổng S là:

\(\left(95+10\right).45:2=2362,5\)

hok tốt!!

1 tháng 8 2017

c) E = \(\dfrac{4116-14}{10290-35}\) và K = \(\dfrac{2929-101}{2.1919+404}\)

E = \(\dfrac{4116-14}{10290-35}\)

E = \(\dfrac{14.\left(294-1\right)}{35.\left(294-1\right)}\)

E = \(\dfrac{14}{35}\)

K = \(\dfrac{2929-101}{2.1919+404}\)

K = \(\dfrac{101.\left(29-1\right)}{101.\left(38+4\right)}\)

K = \(\dfrac{29-1}{34+8}\)

K = \(\dfrac{28}{42}\) = \(\dfrac{2}{3}\)

Ta có : E = \(\dfrac{14}{35}\) và K = \(\dfrac{2}{3}\)

\(\dfrac{14}{35}\) = \(\dfrac{42}{105}\)

\(\dfrac{2}{3}\) = \(\dfrac{70}{105}\)

Vậy E < K

Các câu còn lại tương tự

5 tháng 1 2016

S = (1 - 2 - 3 + 4) + (5 - 6 - 7 + 8) + (9 - 10 - 11 + 12) + (13 - 14 - 15 + 16) + (17 - 18)

= 0 + 0 + 0 + 0 + (-1)

= -1

A = (1 - 2 - 3 + 4) + (5 - 6 - 7 + 8) + ... + (2013 - 2014 - 2015 + 2016) + 2017

= 0 + 0 + ... + 0 + 2017

= 2017

5 tháng 1 2016

S = (1 - 2 - 3 + 4) + (5 - 6 - 7 + 8) +...... + (13 - 14 - 15 + 16)+ 17 - 18

S = 17 - 18 = -2

A = (1 - 2 - 3 + 4) + (5 - 6 -7 + 8) + ..... + (2013 - 2014 - 2015 + 2016)  + 2017

A = 2017 

17 tháng 2 2020

a) S1 = 1 + (-2) + 3 + (-4) + ... + (-2014) + 2015

S1 = [1 + (-2)] + [3 + (-4)] + ... + [2013 + (-2014)] + 2015

S1 = (-1) + (-1) + ... + (-1) + 2015

2014 : 2 = 1007

S1 = (-1) . 1007 + 2015

S1 = (-1007) + 2015

S1 = 1008

b) S2 = (-2) + 4 + (-6) + 8 + ... + (-2014) + 2016

S2 = [(-2) + 4] + [(-6) + 8] + ... + [(-2014) + 2016]

S2 = 2 + 2 + ... 2

2016 : 2 = 1008

S2 = 2 . 1008

S2 = 2016

c) S3 = 1 + (-3) + 5 + (-7) + ... + 2013 + (-2015)

S3 = [1 + (-3)] + [5 + (-7)] + ... + [2013 + (-2015)]

S3 = (-2) + (-2) + ... + (-2)

(2015 - 1) : 2 + 1 = 1008 : 2 = 504

S3 = (-2) . 504

S3 = -1008

d) S4 = (-2015) + (-2014) + (-2013) + ... + 2015 + 2016

S4 = 2016 + [(-2015) + 2015] + [(-2014) + 2014] + ... + [(-1) + 1] + 0

S4 = 2016 + 0

S4 = 2016

17 tháng 2 2020

a, \(S_1=1+\left(-2\right)+3+\left(-4\right)+...+\left(-2014\right)+2015\\ =1+\left[\left(-2\right)+3\right]+\left[\left(-4\right)+5\right]+...+\left[\left(-2014\right)+2015\right]\\ =1+1+...+1=1008\)

b, làm tương tự phần a

c, cũng làm tương tự

d, \(S_4=\left(-2015\right)+\left(-2014\right)+...+2015+2016\\ =\left[\left(-2015\right)+2015\right]+\left[\left(-2014\right)+2014\right]+...+\left[\left(-1\right)+1\right]+0+2016\\ =0+0+...+0+2016=2016\)

20 tháng 9 2015

A = 100 + (98 - 97)+..........+(2-1)

A = 100 + 49 x 1 = 149   

Bài 1: a) \(A=\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\) b) \(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\) c) \(C=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1989.1990}\)Bài 2: a. Tính tổng: \(M=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\) b. Cho: \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) chứng minh rằng 1 < S < 2Bài 3: Tính giá trị của biểu...
Đọc tiếp

Bài 1: a) \(A=\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\)

b) \(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)

c) \(C=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1989.1990}\)

Bài 2: a. Tính tổng: \(M=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)

b. Cho: \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) chứng minh rằng 1 < S < 2

Bài 3: Tính giá trị của biểu thức sau:

\(A=\left(\frac{1}{7}+\frac{1}{23}-\frac{1}{1009}\right):\left(\frac{1}{23}+\frac{1}{7}-\frac{2}{2009}+\frac{1}{7}.\frac{1}{23}.\frac{1}{2009}\right)+1:\left(30.1009-160\right)\)

Bài 4: Tính nhanh:

\(\text{a) 35 . 34 + 35 . 86 + 67 . 75 + 65 . 45}\)

\(\text{b) 21 . }7^2-11.7^2+90.7^2+49.125.16\)

Bài 5: Thực hiện phép tinh sau:

a. \(\frac{2181.729+243.81.27}{3^2.9^2.234+18.54+162.9+723.729}\)

b. \(\frac{1}{1.2+}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

c. \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

d. \(\frac{5.4^{15}-9^9-4.3^{20}}{5.2^{19}.6^{19}-7.2^{29}.27^6}\)

giúp mk nha! nhớ viết cách làm nha!

 

13
23 tháng 10 2016

Bài 1 mik học xong quên hết òi (mấy bài kia là hok biết luôn :V)

14 tháng 12 2016
A=\(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+....+\frac{5}{61.66}\)
A=\(\frac{5}{11}-\frac{5}{16}+\frac{5}{16}-\frac{5}{21}+...+\frac{5}{61}-\frac{5}{66}\)
A=5/11-5/66
A=25/66
 
 
15 tháng 3 2018

thà chết đi còn hơn làm cái đống này mất gianroi

20 tháng 9 2016

a) \(\frac{3^{10}.\left(11+5\right)}{3^9.16}\)=\(\frac{3^{10}.16}{3^{10}.16}\)=1

4 tháng 1 2017

a) \(\frac{3^{10}.\left(11+5\right)}{3^9.16}=\frac{3^{10}.16}{3^9.16}=\frac{3^{10}}{3^9}=3\)