Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ B={x ∈ R| (9-x2)(x2-3x+2)=0}
Ta có:
(9-x2)(x2-3x+2)=0
⇔\(\left[{}\begin{matrix}9-x^2=0\\x^2-3x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(3+x\right)\left(3-x\right)=0\\\left(x^2-x\right)-\left(2x-2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x\left(x-1\right)-2\left(x-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\\left(x-1\right)\left(x-2\right)=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x=1\\x=2\end{matrix}\right.\)
⇒B={-3;1;2;3}
2/ Có 15 tập hợp con có 2 phần tử
\(x^4-16\left(x^2-1\right)=0\Leftrightarrow x^4-16x^2+16=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=8+4\sqrt{3}\\x^2=8-4\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow A=\left\{-\sqrt{6}-\sqrt{2};\sqrt{2}-\sqrt{6};\sqrt{6}-\sqrt{2};\sqrt{2}+\sqrt{6}\right\}\)
\(2x\le9\Rightarrow x\le\frac{9}{2}\Rightarrow B=\left\{0;1;2;3;4\right\}\)
Bạn coi lại đề, tập hợp A nhìn rất có vấn đề :)
A)
\(2x^3-5x+3=0\Leftrightarrow (2x^3-2x)-(3x-3)=0\)
\(\Leftrightarrow 2x(x^2-1)-3(x-1)=0\)
\(\Leftrightarrow 2x(x-1)(x+1)-3(x-1)=0\)
\(\Leftrightarrow (x-1)(2x^2+2x-3)=0\)
\(\Rightarrow \left[\begin{matrix} x=1\\ 2x^2+2x-3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=1\\ x=\frac{-1\pm \sqrt{7}}{2}\end{matrix}\right.\)
Vậy \(A=\left\{1; \frac{-1+\sqrt{7}}{2}; \frac{-1-\sqrt{7}}{2}\right\}\)
B)
Ta có: \(x=\frac{1}{2^a}\geq \frac{1}{8}\)
\(\Rightarrow 2^a\leq 8\Leftrightarrow 2^a\leq 2^3\)
Mà \(a\in\mathbb{N}\Rightarrow a\in\left\{0;1;2;3\right\}\)
\(\Rightarrow x\in\left\{1; \frac{1}{2}; \frac{1}{4}: \frac{1}{8}\right\}\)
Vậy \(B=\left\{1; \frac{1}{2}; \frac{1}{4}; \frac{1}{8}\right\}\)
C) \(C=\left\{x\in\mathbb{N}|x=a^2,a\in\mathbb{N}, x\leq 400\right\}\)
Ta thấy: \(x=a^2\leq 400\)
\(\Leftrightarrow a^2-400\leq 0\Leftrightarrow (a-20)(a+20)\leq 0\)
\(\Leftrightarrow -20\leq a\leq 20\). Mà \(a\in\mathbb{N}\Rightarrow 0\leq a\leq 20\)
\(\Rightarrow a\in\left\{0;1;2;3;...;20\right\}\)
\(\Rightarrow x\in \left\{0^2;1^2;2^2;3^2;....;20^2\right\}\)
Vậy \(C=\left\{0^2;1^2;2^2;,...; 20^2\right\}\)
+)
\(\left(x^2+x\right)^2=x^2-2x+1\)
\(\Leftrightarrow\left(x^2+x\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2+2x-1\right)=0\)
\(\Leftrightarrow x^2+2x-1=0\)
Pt trên có 2 nghiệm thực nên tập A có 2 phần tử