K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải giúp mình các bài này với ạ!1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = ACa. CM : Tam giác OAB = tam giác OACb. CM : AC là tiếp tuyến của đường tròn tâm Oc. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không...
Đọc tiếp

Giải giúp mình các bài này với ạ!

1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm

2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O

3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.

0
7 tháng 7 2016

A B M C N D O E

a) Ta có : \(\widehat{ANC}=\widehat{ACM}=\frac{1}{2}\) sđ cung MC ; Góc CAN là góc chung của hai tam giác CAM và tam giác NAC

\(\Rightarrow\Delta CAM~\Delta NAC\left(g.g\right)\) \(\Rightarrow\frac{CM}{CN}=\frac{AC}{AN}\) (1)

Tương tự với tam giác BAM và tam giác NAB ta cũng có \(\widehat{MBA}=\widehat{ANB}=\frac{1}{2}\)sđ cung BM ; Góc NAB là góc chung của hai tam giác

\(\Rightarrow\Delta BAM~\Delta NAB\left(g.g\right)\Rightarrow\frac{AB}{AN}=\frac{BM}{BN}\) (2)

Mà AB = AC (vì AB và AB là hai tiếp tuyến của (O))

Do đó, kết hợp (1) và (2) ta có \(\frac{CM}{CN}=\frac{BM}{BN}\Rightarrow BM.CN=BN.CM\)

 

7 tháng 7 2016

OK ^^

6 tháng 5 2021

PiucRYU.png

a) Vì AB,AC là tiếp tuyến của (O) \(\Rightarrow\hept{\begin{cases}AB\perp OB\\AC\perp OC\end{cases}\Rightarrow}\hept{\begin{cases}\widehat{ABO}=90^0\\\widehat{ACO}=90^0\end{cases}}\)

Xét tứ giác ABOC có \(\widehat{ABO}+\widehat{ACO}=180^0\)

Mà 2 góc này ở vị trí đối nhau trong tứ giác ABOC

\(\Rightarrow ABOC\)nội tiếp ( dhnb )

b) Xét (O) có AB là tiếp tuyến tại B ; MB là dây cung

\(\Rightarrow\widehat{ABM}=\widehat{ANB}\left(=\frac{1}{2}sđ\widebat{MB}\right)\)

Xét tam giác ABM và tam giác ANB có:

\(\hept{\begin{cases}\widehat{BAN}chung\\\widehat{ABM}=\widehat{ANB}\left(cmt\right)\end{cases}\Rightarrow\Delta ABM~\Delta ANB\left(g-g\right)}\)

\(\Rightarrow\frac{AB}{AM}=\frac{AN}{AB}\Rightarrow AB^2=AM.AN\left(1\right)\)

c)  Gọi H là giao điểm của BC và AO 

Xét tam giác ABH và tam giác AOB có:

\(\hept{\begin{cases}\widehat{BAO}chung\\\widehat{AHB}=\widehat{ABO}=90^0\end{cases}}\Rightarrow\Delta ABH~\Delta AOB\left(g-g\right)\)

\(\Rightarrow\frac{AB}{AH}=\frac{AO}{AB}\Rightarrow AB^2=AO.AH\left(2\right)\)

Từ (1) và (2) \(\Rightarrow AM.AN=AH.AO\)

\(\Rightarrow\frac{AM}{AH}=\frac{AO}{AN}\)

Xét tam giác AMH và tam giác AON có:

\(\hept{\begin{cases}\widehat{NAO}chung\\\frac{AM}{AH}=\frac{AO}{AN}\left(cmt\right)\end{cases}\Rightarrow\Delta AMH~\Delta AON\left(c-g-c\right)}\)

\(\Rightarrow\widehat{AHM}=\widehat{ANO}\)

Mà \(\widehat{AHM}+\widehat{MHO}=180^0\)

\(\Rightarrow\widehat{ANO}+\widehat{MHO}=180^0\)

Xét tứ giác MHON có 

\(\widehat{ANO}+\widehat{MHO}=180^0\)mà 2 góc này ở vị trí đối nhau trong tứ giác  MHON

\(\Rightarrow MHON\)nội tiếp ( dhnb ) 

\(\Rightarrow\widehat{NMO}=\widehat{NHO}\left(3\right)\)

Vì H là giao điểm của BC và AO ( h.vẽ )

Mà \(AB,AC\)là tiếp tuyến của (O)

\(\Rightarrow BC\perp OA\)

\(\Rightarrow\widehat{BHO}=90^0\)

Vì NF là tiếp tuyến của (O) tại N

\(\Rightarrow\widehat{ÒNF}=90^0\)

Xét tứ giác FHON có:\(\widehat{FHO}+\widehat{FNO}=180^0\)mà 2 góc này ở vị trí đối nhau trong tứ giác FHON

=> FHON nội tiếp ( dhnb )

\(\Rightarrow\widehat{NHO}=\widehat{NFO}\left(4\right)\)

Từ (3) và (4) \(\Rightarrow\widehat{NMO}=\widehat{NFO}\)

\(\Rightarrow FMON\)nội tiếp (dhnb)

\(\Rightarrow\widehat{FMO}+\widehat{FNO}=180^0\)

\(\Rightarrow\widehat{FMO}=90^0\)

\(\Rightarrow FM\perp OM\)

\(\Rightarrow FM\)là tiếp tuyến của (O) 

d)  Vì E thuộc đường tròn ngoại tiếp tam giác MNO 

\(\Rightarrow E\)thuộc đường tròn đường kính OF

\(\Rightarrow\widehat{OEF}=90^0\)

+) Vì E thuộc đường tròn ngoại tiếp tứ giác ABOC hay E thuộc đường tròn đường kính AO

\(\Rightarrow\widehat{AEO}=90^0\)

\(\Rightarrow\widehat{OEF}+\widehat{AEO}=180^0\)

\(\Rightarrow A,E,F\)thẳng hàng

Lại có vì góc AEO= 90 độ \(\Rightarrow OE\perp AF\left(5\right)\)

Gọi K là trung điểm của MN

\(\Rightarrow OF\perp MN\)

\(\Rightarrow AK\perp OF\)

Xét tam giác AOF có: \(\hept{\begin{cases}AK\perp OF\\FH\perp AO\end{cases}}\)mà AK cắt FH tại P

=> P là trực tâm của tam giác AOF

\(\Rightarrow OP\perp AF\left(6\right)\)

Từ (5) và (6) \(\Rightarrow O,E,P\)thẳng hàng ( đpcm )