Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|=0\)
vì \(\left|\frac{3}{2}x+\frac{1}{9}\right|\ge0;\left|\frac{1}{5}y-\frac{1}{2}\right|\ge0=>\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\ge0\) (với mọi x,y)
Mà \(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|=0\) (theo đề)
Nên \(\left|\frac{3}{2}x+\frac{1}{9}\right|=0=>\frac{3}{2}x=-\frac{1}{9}=>x=-\frac{2}{27}\)
\(\left|\frac{1}{5}y-\frac{1}{2}\right|=0=>\frac{1}{5}y=\frac{1}{2}=>y=\frac{5}{2}\)
Vậy...........
Vì \(\left|x+\frac{1}{2}\right|\ge0;\left|x+\frac{1}{3}\right|\ge0;\left|x+\frac{1}{6}\right|\ge0\) với mọi x
=>\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{6}\right|\ge0\) với mọi x
=>\(4x\ge0=>x\ge0\), do đó PT ban đầu trở thành:
\(x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{6}=4x< =>3x+1=4x< =>x=1\)
Vậy x=1
\(C=3-\frac{5}{2}\left|\frac{2}{5}-x\right|\)
Ta có:
|2/5 - x| >/ 0
=> 5/2 * |2/5 -x| >/ 0
=> 5/2 * |2/5 -x| -3 >/ -3
=> 3 - 5/2 * |2/5 -x| \< 3
Vậy GTLN của C là 3.
( 3x - 1/2 ) + ( 1/2y + 3/5 ) = 0
=> ( 3 x - 1/2 ) = 0
3x = 0+1/2
3x = 1/2
x = 1/2 : 3
x = 1/6
=> ( 1/2 y + 3/5 ) = 0
1/2y = 0 - 3/5
1/2 y = -3/5
y = -3/5 : 1/2
y = -6/5
Ta có : \(\left|x+\frac{13}{14}\right|=-\left|x-\frac{3}{7}\right|\)
\(\Rightarrow\left|x+\frac{13}{14}\right|+\left|x-\frac{3}{7}\right|=0\)
Mà : \(\left|x+\frac{13}{14}\right|\ge0\forall x\)
\(\left|x-\frac{3}{7}\right|\ge0\forall x\)
Nên : \(\orbr{\begin{cases}\left|x+\frac{13}{14}\right|=0\\\left|x-\frac{3}{7}\right|=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{13}{14}=0\\x-\frac{3}{7}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{13}{14}\\x=\frac{3}{7}\end{cases}}\)
1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10
a) \(=10\frac{1}{4}\cdot\frac{-5}{3}-8\frac{1}{4}\cdot\frac{-5}{3}-5=\left(10\frac{1}{4}-8\frac{1}{4}\right)\cdot\frac{-5}{3}-5\)
\(=\left(\frac{41}{4}-\frac{33}{4}\right)\cdot\frac{-5}{3}-5=2\cdot\frac{-5}{3}-5\)\(=\frac{-10}{3}-\frac{15}{3}=\frac{-25}{3}\)
b)\(=\frac{5}{7}+1+\frac{2}{7}+\frac{2^{10}\cdot\left(2^3\right)^3}{\left(2^2\right)^9}\)
\(=\frac{5}{7}+\frac{2}{7}+1+\frac{2^{10}\cdot2^9}{2^{27}}\)
\(=1+1+\frac{1}{2^8}=2+\frac{1}{256}=\frac{512}{256}+\frac{1}{256}=\frac{513}{256}\)
Cách 1:
\(A=\left(6-\frac{2}{3}+\frac{1}{2}\right)-\left(5+\frac{5}{3}-\frac{3}{2}\right)-\left(3-\frac{7}{3}+\frac{5}{2}\right)\)
\(=\left(\frac{36}{6}-\frac{4}{6}+\frac{3}{6}\right)-\left(\frac{30}{6}+\frac{10}{6}-\frac{9}{6}\right)-\left(\frac{18}{6}-\frac{14}{6}+\frac{15}{6}\right)\)
\(=\frac{35}{6}-\frac{31}{6}-\frac{19}{6}\)
\(=-\frac{15}{6}\)
\(=-\frac{5}{2}\)
Cách 2:
\(A=\left(6-\frac{2}{3}+\frac{1}{2}\right)-\left(5+\frac{5}{3}-\frac{3}{2}\right)-\left(3-\frac{7}{3}+\frac{5}{2}\right)\)
\(=6-\frac{2}{3}+\frac{1}{2}-5-\frac{5}{3}+\frac{3}{2}-3+\frac{7}{3}-\frac{5}{2}\)
\(=\left(6-5-3\right)+\left(-\frac{2}{3}-\frac{5}{3}+\frac{7}{3}\right)+\left(\frac{1}{2}+\frac{3}{2}-\frac{5}{2}\right)\)
\(=-2+0-\frac{1}{2}\)
\(=-\frac{4}{2}-\frac{1}{2}\)
\(=-\frac{5}{2}\)
C1
A=(6−23+12)−(5+53−32)−(3−73+52)=(6.66−2.26+36)−(5.66+5.26−3.36)−(3.66−7.26+5.36)=36−4+36−30+10−96−18−14+156=356−316−196=35−31−196=−156=−52=−212.A=(6−23+12)−(5+53−32)−(3−73+52)=(6.66−2.26+36)−(5.66+5.26−3.36)−(3.66−7.26+5.36)=36−4+36−30+10−96−18−14+156=356−316−196=35−31−196=−156=−52=−212.
C2
A=(6−23+12)−(5+53−32)−(3−73+52)=6−23+12−5−53+32−3+73−52=(6−5−3)+(−23−53+73)+(12+32−52)=−2+−2−5+73+1+3−52=−2+0−12=−52=−212
Ta có:
3x-1/2 = 0
3x= 1/2
x= 1/6
và 1/2y + 3/5 =0
1/2y = -3/5
y= -6/5
Vậy x= 1/6 và y = -6/5
\(\left(3x-\frac{1}{2}\right)+\left(\frac{1}{2}y+\frac{3}{5}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-\frac{1}{2}=0=\frac{1}{6}\\\frac{1}{2}y+\frac{3}{5}=0=\frac{6}{5}\end{cases}}\)
Vậy ......