Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 15:
\(P=\dfrac{x+y-1}{x\left(x+y\right)}+\dfrac{x-y}{2xy}\cdot\dfrac{xy+y^2+xy-y^2}{x\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{1}{x}\)
\(x^2+y^2-x+6y+10\)
=>\(\left(x^2-2\times\frac{1}{2}x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)
=>\(\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\) (Với mọi x)
\(\left(y+3\right)^2\ge0\) (Với mọi x)
=>\(\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\) (Với mọi x)
Dấu "=" xảy ra <=>\(\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2=0\)
=>\(x=\frac{1}{2}\) và \(y=-3\)
Vậy GTNN của bt =3 khi và chỉ khi x=\(\frac{1}{2}\) và \(y=-3\)
A B C D O F G Xét tứ giác FOGD có ^F=^D=^G=900
⇒FOGD là hình chữ nhật
Vì ABCD là hình vuông ⇒AC=BD ,O là trung điểm của AC , BD
⇒OA=OD=OG
Xét △AOD có OA=OD(cmt)
⇒△AOD cân tại O có OF là đường cao ⇔OF đồng thời là đường trung tuyến ứng với cạnh AD⇒AF=FD=\(\dfrac{1}{2}\)AD
tương tự ta có △ODC cân tại O⇒DG=GC=\(\dfrac{1}{2}\)DC
⇔DF=DG=AF=GC
Xét hình chữ nhật FOGD có DF=DG(cmt)
⇒FOGD là hình vuông
1)M=3x(2x-5y)+(3x-y)(-2x)-1/2(2-26xy)
=-1
2)
a)7x(x-2)-5(x-1)=21x^2-14x^2+3
<=>7x2-19x+5=7x2+3
<=>-19x=-2
<=>x=\(\frac{2}{19}\)
3√2 - 5√18 + 6√72 - 4√98 = 3√2-5.3√2+6.2.3√2-4.7/3.3√2
= 3√2(1-5+12-28/3)
= 3√2.(-4/3)
= -4√2