Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)+\left(2x-\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-3x\sqrt{x}+2x-\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(S=\frac{x\sqrt{x}-2x+2\sqrt{x}-1+2x\sqrt{x}+x-2\sqrt{x}-1-3x\sqrt{x}+2x-\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(S=\frac{x-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(S=\frac{1}{\sqrt{x}+1}\)
Vậy \(S=\frac{1}{\sqrt{x}+1}\)
\(x+\frac{1+\sqrt{4x+1}}{2}=\frac{2x+1+\sqrt{4x+1}}{2}=\frac{\left(4x+1\right)+2\sqrt{4x+1}+1}{4}=\left(\frac{1+\sqrt{4x+1}}{2}\right)^2\)
=> \(\sqrt{x+\frac{1+\sqrt{4x+1}}{2}}=\sqrt{\left(\frac{1+\sqrt{4x+1}}{2}\right)^2}=\frac{1+\sqrt{4x+1}}{2}\). tiếp tục n dấu căn
=> A = \(\frac{1+\sqrt{4x+1}}{2}\)
a) \(\sqrt{27x^2}=\sqrt{3.\left(3x\right)^2}=\left|3x\right|.\sqrt{3}=3x\sqrt{3}\left(x>0\right)\)
b) \(\sqrt{8xy^2}=\left|y\right|.2\sqrt{2x}=-2y\sqrt{2x}\left(x\ge0,y\le0\right)\)
1) \(x\sqrt{13}=\sqrt{13x^2}\left(x\ge0\right)\)
2) \(x\sqrt{-15x}=-\left|x\right|\sqrt{15x}=-\sqrt{15x^3}\left(x< 0\right)\)
3) \(x\sqrt{2}=-\left|x\right|\sqrt{2}=-\sqrt{2x^2}\left(x\le0\right)\)