Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 )
a ) \(2.2^2.2^3.....2^x=1024\Leftrightarrow2^{1+2+....+x}=2^{10}\Leftrightarrow1+2+....+x=10\)
\(\Leftrightarrow\frac{x\left(x+1\right)}{2}=10\Leftrightarrow\left(x+1\right)x=20=4.5\Rightarrow x=4\)
b ) \(\frac{37-x}{x+13}=\frac{3}{7}\Leftrightarrow3x+39=259-7x\Leftrightarrow3x+7x=259-39\Leftrightarrow10x=220\Rightarrow x=22\)
Bài 2 ) \(\frac{1}{2}\sqrt{64}-\sqrt{\frac{4}{25}}+\left(\frac{50^2-15.125}{5^4}\right)^{2014}=\frac{1}{2}.8-\frac{2}{5}+\left(\frac{5^4.2^2-3.5^4}{5^4}\right)^{2014}\)
\(=4-\frac{2}{5}+\left[\frac{5^4\left(4-3\right)}{5^4}\right]^{2014}=\frac{18}{5}+1=\frac{23}{5}\)
Mình làm bài 1 thui nha, còn bài 2 thì còn tự tính là được thôi mừ !!!
Bài 1:
a) \(2.2^2.2^3...2^x=1024\)
\(=>2^{1+2+3+...+x}=2^{10}\)
\(< =>1+2+3+...+x=10\)
\(=>6+x=10\)
\(=>x=10-6\)
\(=>x=4.\)
Nếu đúng thì k cho mình nhá
a)\(\left(\frac{1}{3}\right)^{-1}-\left(-\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^4.2^3=3-1+\frac{1}{16}.8=3-1+\frac{1}{2}=\frac{5}{2}\\ \)
b)\(2^2.2^3.\left(\frac{2}{3}\right)^{-2}=2^5.\frac{9}{4}=72\)
c)\(\left(\frac{4}{3}\right)^{-2}.\left(\frac{3}{4}\right)^3:\left(\frac{-2}{3}\right)^{-3}=\left(\frac{3}{4}\right)^2.\left(\frac{3}{4}\right)^3:\left(\frac{-2}{3}\right)^{-3}=\left(\frac{3}{4}\right)^5:\left(\frac{3}{2}\right)^3=\frac{9}{128}\)
2)
\(3^{x+1}=9^x\Leftrightarrow3^x.3=9^x\Rightarrow3=9^x:3^x\Rightarrow3=3^x\Rightarrow x=1\)
\(\left(x-0,1\right)^2=6,25\Leftrightarrow\left(x-0,1\right)^2=2,5^2\Rightarrow\left(x-0,1\right)=2,5\Rightarrow x=2,5+0,1=2,6\)
\(3^{2x-1}=243\Leftrightarrow3^{2x-1}=3^5\Rightarrow2x-1=5\Rightarrow2x=6\Rightarrow x=3\)
\(\left(4x-3\right)^4=\left(4x-3\right)^2\Rightarrow x=1\)
a) \(\left|\frac{1}{2}+x\right|+\left|x+y+z\right|+\left|\frac{1}{3}+y\right|=0\)
=> \(\left|\frac{1}{2}+x\right|=\left|x+y+z\right|=\left|\frac{1}{3}+y\right|=0\)
1/2 + x = 0 => x = -1/2
1/3 + y = 0 => y = -1/3
-1/2 + -1/3 + z = 0
=> z = 5/6
1.a) \(\left(31\frac{6}{13}+5\frac{9}{41}\right)-36\frac{6}{13}=\left(31+\frac{6}{13}+5+\frac{9}{41}\right)-\left(36+\frac{6}{13}\right)\)
\(=\left(36+\frac{6}{13}-\frac{9}{41}\right)-\left(36+\frac{6}{13}\right)=\left(36+\frac{6}{13}\right)-\left(36+\frac{6}{13}\right)-\frac{9}{41}=-\frac{9}{41}\)
b) \(\frac{5}{3}+\left(-\frac{2}{7}\right)-\left(-1,2\right)-\left|1.4-0,2\right|\)
\(=\frac{5}{3}-\frac{2}{7}+1,2-1,2=\frac{29}{21}\)
c) \(0,25+\frac{3}{5}-\left(\frac{1}{8}-\frac{2}{5}+1\frac{1}{4}\right)+\left|\frac{3}{5}\right|\)
\(=\frac{1}{4}+\frac{3}{5}-\frac{1}{8}+\frac{2}{5}-1-\frac{1}{4}+\frac{3}{5}\)
\(=\left(\frac{1}{4}-\frac{1}{4}\right)+\left(\frac{3}{5}+\frac{2}{5}-1\right)+\frac{3}{5}-\frac{1}{8}=\frac{19}{40}\)
2) \(-\frac{3}{5}-x=0,75\)
=> \(-\frac{3}{5}-x=\frac{3}{4}\)
=> \(x=-\frac{3}{5}-\frac{3}{4}=\frac{-27}{20}\)
b) \(x+\frac{1}{3}=\frac{2}{5}-\left(-\frac{1}{3}\right)\)
=> \(x+\frac{1}{3}=\frac{2}{5}+\frac{1}{3}\)
=> \(x=\frac{2}{5}\)
c) |2x - 4| + 1 = 5
=> |2x - 4| = 4
<=> \(\orbr{\begin{cases}2x-4=4\\2x-4=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}\)
Giúp mình với nha cả nhả :<
Cả nhà làm vài ý thui cx được ạ :<
BT1: 20152014 có tận cùng là 5
20142015=2014.(20142)1007=2014.40561961007=2014.(...6) => Có tận cùng là ...4
=> 20152014-20142015 có tận cùng là ...5-...4=...1
BT2: f(1)=a.1+b=1 (1)
f(2)=a.2+b=4 (2)
Trừ (2) cho (1) => a=3
Thay a=3 vào (1) => b=-2
ĐS: a=3; b=-2
Bài 1 :
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2018}}{\frac{2017}{1}+\frac{2016}{2}+\frac{2015}{3}+...+\frac{1}{2017}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}{\left(\frac{2017}{1}+1\right)+\left(\frac{2016}{2}+1\right)+\left(\frac{2015}{3}+1\right)+...+\left(\frac{1}{2017}+1\right)+1}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}{\frac{2018}{1}+\frac{2018}{2}+\frac{2018}{3}+....+\frac{2018}{2017}+\frac{2018}{2018}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}{2018.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}+\frac{1}{2018}\right)}\)
\(=\frac{1}{2018}\)
B=\(\frac{\frac{1}{51}+\frac{1}{53}+...+\frac{1}{149}}{\frac{1}{101.99}+\frac{1}{103.97}+...+\frac{1}{149.51}}\)
\(\)TA CÓ E=\(\frac{1}{101.99}+\frac{1}{103.97}+...+\frac{1}{149.51}\)
\(200E=\frac{200}{101.99}+\frac{200}{103.97}+..+\frac{200}{149.51}\)
\(200E=\frac{101+99}{101.99}+\frac{103+97}{103.97}+...+\frac{149+51}{149.51}\)
\(200E=\frac{1}{99}+\frac{1}{101}+\frac{1}{97}+\frac{1}{103}+...+\frac{1}{51}+\frac{1}{149}\)
\(200E=\frac{1}{51}+\frac{1}{53}+...+\frac{1}{147}+\frac{1}{149}\)
\(E=\left(\frac{1}{51}+\frac{1}{53}+...+\frac{1}{147}+\frac{1}{149}\right):200\)\(=\left(\frac{1}{51}+\frac{1}{53}+...+\frac{1}{147}+\frac{1}{149}\right).\frac{1}{200}\)
\(\Rightarrow B=\frac{1}{51}+\frac{1}{53}+...+\frac{1}{149}\)/\(\left(\frac{1}{51}+\frac{1}{53}+..+\frac{1}{149}\right).\frac{1}{200}\)
\(\Rightarrow B=\frac{1}{\frac{1}{200}}=200\)
VẬY B=200
a)\(\left(\frac{2}{5}\right)^{2014}:\left(\frac{4}{25}\right)^{1007}=\left[\left(\frac{2}{5}\right)^2\right]^{1007}:\left(\frac{4}{25}\right)^{1007}\)
\(=\left(\frac{4}{25}\right)^{1007}:\left(\frac{4}{25}\right)^{1007}\)
\(=1\)
b)\(3^{n+1}:9=3^{n+1}:3^2\)
\(=3^{n+1-2}\)
\(=3^{n-1}\)