Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I,Trắc nghiệm
Câu 1 ; A
Câu 2 ; C
Câu 3 ; D
Câu 4 ; B
Câu 5 ; D
II,Tự luận
Câu 6
a]
Giá trị [ x ] | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Tần số [ n ] | 1 | 2 | 4 | 4 | 6 | 1 | 2 | N=20 |
b] \(\frac{4.1+5.2+6.4+7.4+8.6+9.1+10.2}{20}=1,2\)
Câu 7
a.
\(A(x)=-3x^3+2x-3x^3+1\)
\(=-6x^3+2x+1\)
\(B(x)=2x^2+3x^3-2x-5\)
\(=3x^3+2x^2-2x-5\)
b.\(Q(x)=A(x)+B(x)\)
\(\Rightarrow Q(x)=(-6x^3+2x+1)+(3x^3+2x^2-2x-5)\)
\(=(-6x^3+3x^3)+2x^2+(2x-2x)+(1-5)\)
\(=-3x^3+2x^2-4\)
c.Ta có ;
\(Q(x)=-3x^3+2x^2-4=0\)
\(\Rightarrow-3x^3+2x^2=4\)
\(\Rightarrow x^2(-3x+2)=4\)
\(\Rightarrow\)Đa thức Q[x] ko có nghiệm
Câu 8
A B C E D M
a.Áp dụng tính chất Py-ta-go vào tam giác vuông ABC có
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC^2=9^2+12^2\)
\(\Rightarrow BC^2=225\)
\(\Rightarrow BC=15\)cm
Vậy BC = 15cm
b.Xét hai tam giác vuông ABD và tam giác vuông MBD có
góc BAD = góc BMD = 90độ
cạnh BD chung
góc ABD = góc MBD [ vì BD là phân giác góc B ]
Do đó ; tam giác ABD = tam giác MBD [ cạnh huyền - góc nhọn ]
c.Xét hai tam giác vuông ADE và tam giác vuông MDC có
góc DAE = góc DMC = 90độ
AD = MD [ vì tam giác ABD = tam giác MBD theo câu b ]
góc ADE = góc MDC [ đối đỉnh ]
Do đó ; tam giác ADE = tam giác MDC [ cạnh góc vuông - góc nhọn ]
\(\Rightarrow\)AE = MC [ cạnh tương ứng ]
mà AB = MB [ vì tam giác ABD = tam giác MBD theo câu b ]
\(\Rightarrow\)AE + AB = MC + MB
\(\Rightarrow\)BE = BC
Vậy tam giác BEC là tam giác cân tại B
Chúc bạn học tốt nhé
nhớ kết bạn với mk nha
Bài 2b
Thay x = -1; y = 1 vào N ta đc:
\(N=\left(-1\right).1+\left(-1\right)^2.1^2+\left(-1\right)^3.1^3+\left(-1\right)^4.1^4+\left(-1\right)^5.1^5\)
\(=\left(-1\right)+1+\left(-1\right)+1+\left(-1\right)\)
\(=-1\)
Bài 5:
a)
\(F=3x^3y+6x^2y^2+3xy^3=3xy(x^2+2xy+y^2)=3xy(x+y)^2\)
\(=3.\frac{1}{2}.\frac{-1}{3}(\frac{1}{2}+\frac{-1}{3})^2=\frac{-1}{72}\)
b)
\(G=x^2y^2+xy+x^3+y^3=(-1)^2(-3)^2+(-1)(-3)+(-1)^3+(-3)^3\)
\(=9+3-1-27=-18\)
Bài 7:
a)
\(x^2+2x=0\Leftrightarrow x(x+2)=0\Rightarrow \left[\begin{matrix} x=0\\ x+2=0\end{matrix}\right. \Rightarrow \left[\begin{matrix} x=0\\ x=-2\end{matrix}\right.\)
Vậy đa thức có nghiệm $x=0; x=-2$
b)
\(-5x^4=0\Leftrightarrow x^4=0\Leftrightarrow x=0\)
Vậy đa thức có nghiệm $x=0$
c)
\(x^2+\sqrt{5}=0\Leftrightarrow x^2=-\sqrt{5}< 0\) (vô lý do bình phương một số thực luôn không âm)
Do đó đa thức vô nghiệm.
d)
\((x^2+3)(-6-4x^4)=0\Rightarrow \left[\begin{matrix} x^2+3=0\\ -6-4x^4=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x^2=-3< 0\\ x^4=\frac{-3}{2}< 0\end{matrix}\right.\) (vô lý)
Do đó đa thức vô nghiệm.
e)
\(3x^8+6=0\Leftrightarrow 3(x^4)^2=-6< 0\) (vô lý)
Do đó đa thức vô nghiệm.
f)
\(x^2+2x-3=0\Leftrightarrow x^2-x+3x-3=0\Leftrightarrow x(x-1)+3(x-1)=0\)
\(\Leftrightarrow (x-1)(x+3)=0\Rightarrow \left[\begin{matrix} x=1\\ x=-3\end{matrix}\right.\)
Đa thức có nghiệm $x=1, x=-3$
Câu 4:
a: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB=DC
b: ta có: ABDC là hình bình hành
nên AB//DC
c: Xét hình bình hành ABDC có AB=AC
nên ABDC là hình thoi
=>CB là tia phân giác của góc ACD
Bài 1
a)M+N=\(x^2y+xy^2-5x^2y^2+x^3+x^3+xy+3xy^2-x^2y+x^2y^2\)
=4xy2-4x2y2+2x3+xy
b)M-N=\(x^2y+xy^2-5x^2y^2+x^3-x^3-xy-3xy^2+x^2y-x^2y^2\)
=\(2x^2y-2xy^2-xy-6x^2y^2\)
Lời giải:
\(x^3y^2(xy^2)=x^3.x.y^2.y^2=x^4y^4\)
\(-3x^3y.\frac{1}{5}x^2y=\frac{-3}{5}x^3.x^2.y.y=\frac{-3}{5}x^5y^2\)
\(\frac{2}{5}x^3\frac{1}{2}(xy)^2=\frac{1}{5}x^3.x^2.y^2=\frac{1}{5}x^5y^2\)
\(\frac{1}{2}(xy)^2\frac{2}{5}(xy)^2=\frac{1}{5}x^2.x^2.y^2.y^2=\frac{1}{5}x^4y^4\)
Vậy các đơn thức phần a,b,c đồng dạng với nhau; đơn thức d và e đồng dạng với nhau.
Cho mik hỏi câu 3 tại sao ra 7 ạy
bạn cứ tính các bậc của đơn thức có trong đa thức đó rồi lấy số lớn nhất vừa tìm được làm bậc của đa thức đó.