Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-1\right)^3=27\\ \left(2x-1\right)^3=3^3\\ \Leftrightarrow2x-1=3\\ 2x=3+1\\ 2x=4\\ x=4:2\\ x=2\\ Vậyx=2\)
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và xy = 112 ( thế này mới đúng chứ nhỉ ? )
Bạn tự áp dụng tính chất của dãy tỉ số bằng nhau nhé!
TH1 : \(x+y+z=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)
\(\Leftrightarrow M=\dfrac{\left(-z\right)\left(-x\right)\left(-y\right)}{8xyz}=\dfrac{-\left(xyz\right)}{8xyz}=\dfrac{-1}{8}\)
Th2 : \(x+y+z\ne0\)
\(\dfrac{2x+2y-z}{z}=\dfrac{2x-2z+y}{y}=\dfrac{2y+2z-x}{x}\)
\(\Leftrightarrow\left(\dfrac{2x+2y-z}{z}+3\right)=\left(\dfrac{2x-2z+y}{y}+3\right)=\left(\dfrac{2y+2z-x}{x}+3\right)\)
\(\Leftrightarrow\dfrac{2x+2y+2z}{z}=\dfrac{2x+2y+2z}{y}=\dfrac{2x+2y+2z}{x}\)
\(\Leftrightarrow x=y=z\)
\(\Leftrightarrow M=\dfrac{2x.2y.2z}{8xyz}=1\)
Vậy \(\left[{}\begin{matrix}M=\dfrac{-1}{8}\Leftrightarrow x+y+z=0\\M=1\Leftrightarrow x+y+z\ne0\end{matrix}\right.\)
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
Bài 1:
a, \(2y.\left(y-\dfrac{1}{7}\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}2y=0\\y-\dfrac{1}{7}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=0\\y=\dfrac{1}{7}\end{matrix}\right.\)
Vậy \(y\in\left\{0;\dfrac{1}{7}\right\}\)
b, \(\dfrac{-2}{5}+\dfrac{2}{3}y+\dfrac{1}{6}y=\dfrac{-4}{15}\)
\(\Rightarrow\dfrac{5}{6}y=\dfrac{-4}{15}+\dfrac{2}{5}\)
\(\Rightarrow\dfrac{5}{6}y=\dfrac{2}{15}\)
\(\Rightarrow y=\dfrac{4}{25}\)
Vậy \(y=\dfrac{4}{25}\)
Chúc bạn học tốt!!!
Bài 1:
a, \(2y\left(y-\dfrac{1}{7}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2y=0\\y-\dfrac{1}{7}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{1}{7}\end{matrix}\right.\)
Vậy...
b, \(\dfrac{-2}{5}+\dfrac{2}{3}y+\dfrac{1}{6}y=\dfrac{-4}{15}\)
\(\Rightarrow\dfrac{5}{6}y=\dfrac{2}{15}\)
\(\Rightarrow y=\dfrac{4}{25}\)
Vậy...
Bài 2:
a, \(x\left(x-\dfrac{4}{7}\right)>0\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-\dfrac{4}{7}>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x< 0\\x-\dfrac{4}{7}< 0\end{matrix}\right.\)
\(\Rightarrow x>\dfrac{4}{7}\left(x\ne0\right)\) hoặc \(x< \dfrac{4}{7}\left(x\ne0\right)\)
Vậy...
Các phần còn lại tương tự nhé
Đặt k = \(\dfrac{x}{4}=\dfrac{y}{7}\Rightarrow x=4k,y=7k\)
Từ x.y = 112, ta có: 4k.7k = 112
\(\Rightarrow\) \(28k^2\) = 112
\(\Rightarrow k^2=4\)
\(\Rightarrow\left[{}\begin{matrix}k=-2\\k=2\end{matrix}\right.\)
Có 2 trường hợp xảy ra:
TH1: k = -2
\(\Rightarrow x=-8,y=-14\)
TH2: k = 2
\(\Rightarrow x=8,y=14\)
Vậy \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-8\\y=-14\end{matrix}\right.\\\left\{{}\begin{matrix}x=8\\y=14\end{matrix}\right.\end{matrix}\right.\)
Vì \(\dfrac{x}{4}=\dfrac{y}{7}\)
\(\Rightarrow7.x=4.y\)
\(\Rightarrow x=\dfrac{4}{7}.y\)
Mà \(x.y=112\)
hay \(\dfrac{4}{7}.y.y=112\)
\(y^2=196\)
\(\Rightarrow\left\{{}\begin{matrix}y=14\\y=-14\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)
Vậy \(y=14;x=8\)
\(y=-14;x=-8\)
Đặt \(\dfrac{x}{4}=\dfrac{y}{7}=k\)
⇒ \(\left\{{}\begin{matrix}x=4k\\y=7k\end{matrix}\right.\)
\(xy=28k^2=112\)
⇒ \(k^2=4\)
⇒ \(\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\)
Còn lại bạn làm tiếp nha