Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x4 - 3x + 2 = (x4 - x3) + (x3 - x2) + (x2 - x) + (-2x + 2)
= (x - 1)(x3 + x2 + x - 2)
\(\left(x-1\right)\left(x^3+bx^2+ax-2\right)\)
\(=x^4+bx^3+ax^2-2x-x^3-bx^2-ax+2\)
\(=x^4+x^3\left(b-1\right)+x^2\left(a-b\right)-x\left(a+2\right)+2\)
Đồng nhất với đa thức \(x^4-3x+2\), ta có:
\(b-1=0,a-b=0,a+2=3\)
\(\Rightarrow a=1,b=1\)
Chúc bạn học tốt.
làm mẫu 1 phần thôi men còn lại tự làm
giải
a)
ax^3+ bx-24 x^2+4x+3 ax-4a ax^3+4ax^2+3ax - -4ax^2+(b-3a)x-24 -4ax^2-16ax-12a - (b-3a+16a)x-(24-12a)
Để \(A\left(x\right)⋮B\left(x\right)\)\(\Leftrightarrow\hept{\begin{cases}b-3a+16a=0\\24-12a=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b+13.2=0\\a=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=-26\\a=2\end{cases}}\)
\(x^4-3x+2=\left(x-1\right)\left(x^3+bx^2+ax-2\right)\)
\(\Leftrightarrow x^4-3x+2=x^4+bx^3+ax^2-2x-x^3-bx^2-ax+2\)
\(\Leftrightarrow x^4-3x+2=x^4+\left(b-1\right)x^3+\left(a-b\right)x^2+\left(-2-a\right)x+2\)
\(\Leftrightarrow x^4+0x^3+0x^2-3x+2=x^4+\left(b-1\right)x^3+\left(a-b\right)x^2+\left(-2-a\right)x+2\)
Ta có: \(\left\{{}\begin{matrix}b-1=0\\a-b=0\\-2-a=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=1\\a=b\\a=1\end{matrix}\right.\)
\(\Leftrightarrow a=b=1\)
Vậy: ...