Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{cota-tana}{tana+2\cdot cota}\)
\(=\dfrac{\dfrac{cosa}{sina}-\dfrac{sina}{cosa}}{\dfrac{sina}{cosa}+2\cdot\dfrac{cosa}{sina}}\)
\(=\dfrac{cos^2a-sin^2a}{sina\cdot cosa}:\dfrac{sin^2a+2\cdot cos^2a}{sina\cdot cosa}\)
\(=\dfrac{cos^2a-sin^2a}{sin^2a+2\cdot cos^2a}\)
\(=\dfrac{1-2\cdot sin^2a}{sin^2a+2\left(1-sin^2a\right)}\)
\(=\dfrac{1-2\cdot sin^2a}{-sin^2a+2}\)
\(=\dfrac{1-2\cdot\left(\dfrac{1}{3}\right)^2}{-\left(\dfrac{1}{3}\right)^2+2}=\dfrac{1-\dfrac{2}{9}}{-\dfrac{1}{9}+2}=\dfrac{7}{9}:\dfrac{17}{9}=\dfrac{7}{17}\)
2) Giải :
A = \(\dfrac{2\times\dfrac{\sin x}{\sin x}+3\times\dfrac{\cos x}{\sin x}}{5\times\dfrac{\cos x}{\sin x}+6\times\dfrac{\sin x}{\sin x}}=\dfrac{2+3\cot x}{5\cot x-6}=\dfrac{2+3\times2}{5\times2-6}=2\)
1) \(\sin^2x+\cos^2x=1\Rightarrow\cos x=1-\sin^2x=1-\left(\dfrac{2}{3}\right)^2=\dfrac{5}{9}\)
P = ( 1-3cos2a)(2+3cos2a)
= 2 + 3cos2a - 6cos2a - 9\(cos^22a\)
Thay cos = 5/9 vào pt rồi giải bpt là được
theo giả thiết: \(\sin x=\frac{1}{3}\Rightarrow\left(1-\cos^2x\right)=\frac{1}{9}\Rightarrow cosx=\frac{\pm2\sqrt{2}}{3}\)
mà \(0< x< \frac{\pi}{2}\) nên \(cosx=\frac{2\sqrt{2}}{3}\)
ta có: \(\sin\left(a+\frac{\pi}{3}\right)=\sin a\cos\frac{\pi}{3}+\cos a\sin\frac{\pi}{3}=\frac{1}{6}+\frac{\sqrt{6}}{3}\)
Bạn @Nhók Lì Lợm giải đúng rồi nhưng bị nhầm phần biến x (lẽ ra theo đề là a)
Ta có : \(\sin^2a+\cos^2a=1\Rightarrow\cos a=\frac{\sqrt{21}}{5}\)
Ta có : \(\frac{\cot a-\tan a}{\cot a+\tan a}=\frac{\frac{\cos a}{\sin a}-\frac{\sin a}{\cos a}}{\frac{\cos a}{\sin a}+\frac{\sin a}{\cos a}}\\ =\frac{\frac{\frac{\sqrt{21}}{5}}{\frac{2}{5}}-\frac{\frac{2}{5}}{\frac{\sqrt{21}}{5}}}{\frac{\frac{\sqrt{21}}{5}}{\frac{2}{5}}+\frac{\frac{2}{5}}{\frac{\sqrt{21}}{5}}}=\frac{17}{25}=0,68\)
có cả TH cos âm mà