Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a:b=3:4\Leftrightarrow\frac{a}{3}=\frac{b}{4}\Leftrightarrow\frac{a^2}{9}=\frac{b^2}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{9}=\frac{b^2}{16}=\frac{a^2+b^2}{9+16}=\frac{36}{25}\)
=>\(\hept{\begin{cases}a^2=\frac{36}{25}.9=\frac{324}{25}\\b^2=\frac{36}{25}.16=\frac{576}{25}\end{cases}}\)
=>\(\hept{\begin{cases}\left(a;b\right)=\left(-\frac{18}{5};-\frac{24}{5}\right)\\\left(a;b\right)=\left(\frac{18}{5};\frac{24}{5}\right)\end{cases}}\)
=>\(ab=\frac{432}{25}\)
\(a:b=2:5\Rightarrow\frac{a}{2}=\frac{b}{5}\Rightarrow\frac{a}{8}=\frac{b}{20}\left(1\right)\)
\(b:c=4:3\Rightarrow\frac{b}{4}=\frac{c}{3}\Rightarrow\frac{b}{20}=\frac{c}{15}\left(2\right)\)
Từ (1) và (2)
=> \(\frac{a}{8}=\frac{b}{20}=\frac{c}{15}\)
Đặt \(\frac{a}{8}=\frac{b}{20}=\frac{c}{15}=k\)
\(\Rightarrow\hept{\begin{cases}a=8k\\b=20k\\c=15k\end{cases}}\)
Thay a,b,c vào đẳng thức :
=> ab - c2 = 160k2 - 225k2 = -10,4
=> -65k = -10,4
=> k = \(-\frac{4}{25}\)
\(\Rightarrow\hept{\begin{cases}a=8k=-\frac{32}{25}\\b=20k=-\frac{16}{5}\\c=15k=-\frac{12}{5}\end{cases}}\)
\(\Rightarrow\left|a+b+c\right|=\left|\frac{-32}{25}+\frac{-16}{5}+\frac{-12}{5}\right|=\frac{172}{25}=6,88\)
Biết rằng a:b = 3:5 và 3a-b=17,2 . Giá trị của a+b= 34.4
(Nhập kết quả dưới dạng số thập phân đơn giản nhất)
Biết rằng a:b = -2,4:3,8 và 2a+b=-6 . Giá trị của a+b=8.4
(Nhập kết quả dưới dạng số thập phân đơn giản nhất)
Biết rằng a:b = 3:5 và 3a-b=17,2 . Giá trị của a+b= 34.4
(Nhập kết quả dưới dạng số thập phân đơn giản nhất)
Biết rằng a:b = -2,4:3,8 và 2a+b=-6 . Giá trị của a+b=8.4
(Nhập kết quả dưới dạng số thập phân đơn giản nhất)
chúc bn hok tốt @_@
\(a\div b=2\div5\Rightarrow a=\frac{2}{5}b\)
\(b\div c=4\div3\Rightarrow c=\frac{3}{4}b\)
\(ab-c^2=-10,4\)
\(\Leftrightarrow\frac{2}{5}b.b-\left(\frac{3}{4}b\right)^2=-10,4\)
\(\Leftrightarrow\frac{-13}{80}b^2=-10,4\)
\(\Leftrightarrow b^2=64\)
\(\Leftrightarrow\orbr{\begin{cases}b=8\Rightarrow a=\frac{16}{5},c=6\\b=-8\Rightarrow a=\frac{-16}{5},c=-6\end{cases}}\)
\(\left|a+b+c\right|=\left|8+\frac{16}{5}+6\right|=\frac{86}{5}=17,2\)
\(\frac{a}{b}=\frac{3}{5}\Rightarrow\frac{a}{3}=\frac{b}{5}\)
\(\frac{a}{3}\Rightarrow\frac{3a}{9}\)
\(\frac{3a}{9}=\frac{b}{5}=\frac{3a-b}{9-5}=\frac{17,2}{4}=4,3\)
\(\frac{3a}{9}=4,3\Rightarrow a=12,9\)
\(\frac{b}{5}=4,3\Rightarrow b=21,5\)
\(\Rightarrow a+b=34,4\)
tíc mình nha
Ta có: \(a:b=3:5\Rightarrow\frac{a}{3}=\frac{b}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3}{a}=\frac{b}{5}=\frac{3a}{9}=\frac{b}{5}=\frac{3a-b}{9-5}=\frac{17,2}{4}=4,3\)
+) \(\frac{a}{3}=4,3\Rightarrow a=12,9\)
+) \(\frac{b}{5}=4,3\Rightarrow b=21,5\)
\(\Rightarrow a+b=12,9+21,5=34,4\)
Vậy, a + b = 34,4.
\(\frac{a}{b}=\frac{3}{4}\Rightarrow\frac{a}{3}=\frac{b}{4}\Rightarrow\frac{a^2}{9}=\frac{b^2}{16}\)
Từ \(\frac{a^2}{9}=\frac{b^2}{16}\)\(\Rightarrow\frac{a^2}{9}=\frac{b^2}{16}=\frac{a^2+b^2}{9+16}=\frac{36}{25}\)
\(\Rightarrow a=\frac{18}{5};b=\frac{24}{5}\)
\(\Rightarrow a.b=\frac{18}{5}.\frac{24}{5}=\frac{432}{25}=17,28\)
a : b = 3 : 4 => \(\frac{a}{3}=\frac{b}{4}\)=> \(\frac{a^2}{9}=\frac{b^2}{16}\)
- Theo tính chất dãy tỉ số bằng nhau, ta có: \(\frac{a^2}{9}=\frac{b^2}{16}=\frac{a^2+b^2}{9+16}=\frac{36}{25}=1,44\)
=> a = 1,44 . 3 = 4,32
b = 1,44 . 4 = 5,76
=> a. b = 4,32 . 5,76 = 24,9