Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(a^2+b^2\right)^2}{\left(a-b\right)^2}=\frac{\left(a^2+b^2\right)^2}{a^2+b^2-2ab}=\frac{x^2}{x-2}\) với \(x=a^2+b^2\)
Xét \(x^2-8\left(x-2\right)=x^2-8x+16=\left(x-4\right)^2\ge0\)
\(\Rightarrow x^2\ge8\left(x-2\right)\Leftrightarrow\frac{x^2}{x-2}\ge8\)hay \(\frac{\left(a^2+b^2\right)^2}{\left(a^2+b^2-2ab\right)}\ge8\Leftrightarrow\frac{\left(a^2+b^2\right)^2}{\left(a-b\right)^2}\ge8\Rightarrow\frac{a^2+b^2}{a-b}\ge2\sqrt{2}\)
1. Ta có : \(\left(\sqrt{a}-\sqrt{b}\right)^2>0\Leftrightarrow a-2\sqrt{ab}+b>0\Leftrightarrow a+b>2\sqrt{ab}\Leftrightarrow\frac{1}{\sqrt{ab}}>\frac{2}{a+b}\)
2. Áp dụng từ câu 1) , ta có :
\(\frac{1}{\sqrt{1.2005}}+\frac{1}{\sqrt{2.2004}}+...+\frac{1}{\sqrt{2005.1}}>\frac{2}{1+2005}+\frac{2}{2+2004}+...+\frac{2}{2005+1}\)
\(\Leftrightarrow\frac{1}{\sqrt{1.2005}}+\frac{1}{\sqrt{2.2004}}+...+\frac{1}{\sqrt{2005.1}}< \frac{2.2005}{2006}=\frac{2005}{1003}\)
3. Ta có : \(\left(\frac{x^2+y^2}{x-y}\right)^2=\frac{x^4+2x^2y^2+y^4}{x^2-2xy+y^2}=\frac{x^4+y^4+2}{x^2+y^2-2}\)
Đặt \(t=x^2+y^2,t\ge0\Rightarrow\frac{x^4+y^4+2}{x^2+y^2-2}=\frac{t^2-2+2}{t-2}=\frac{t^2}{t-2}\)
Xét : \(\frac{t-2}{t^2}=\frac{1}{t}-\frac{2}{t^2}=-2\left(\frac{1}{t^2}-\frac{2}{t.4}+\frac{1}{16}\right)+\frac{1}{8}=-2\left(\frac{1}{t}-\frac{1}{4}\right)^2+\frac{1}{8}\le\frac{1}{8}\)
\(\Rightarrow\frac{t^2}{t-2}\ge8\Rightarrow\left(\frac{x^2+y^2}{x-y}\right)^2\ge8\Leftrightarrow\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
\(A=a+\frac{1}{b\left(a-b\right)^2}=\frac{\left(a-b\right)}{2}+\frac{\left(a-b\right)}{2}+b+\frac{1}{b\left(a-b\right)^2}\ge4\sqrt[4]{\frac{1}{4}}=2\sqrt{2}\)
( cô si )
Giai
TS + 2 và - 2/(a-b)
SD BĐT Cô si => đpcm
"=" a = (\(\frac{\sqrt{3}+1}{\sqrt{2}}\)) ; b = \(\frac{\sqrt{3}\text{-}1}{\sqrt{2}}\) và ngược lại
Em làm thử nhé!
Bài 1: \(A=\left[\frac{a^2}{b-1}+4\left(b-1\right)\right]+\left[\frac{b^2}{a-1}+4\left(a-1\right)\right]-4\left(a+b\right)+8\)
Cauchy vào là ra rồi ạ;)
Bài 2: Em chịu
2) Có: \(\sqrt{ab}\le\frac{a+b}{2}=1\); \(\sqrt{a}+\sqrt{b}=\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2}\le\sqrt{2\left(a+b\right)}=2\)
\(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}=\frac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{ab}}\ge\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3=\frac{a^2}{\sqrt{a}}+\frac{b^2}{\sqrt{b}}\)
\(\ge\frac{\left(a+b\right)^2}{\sqrt{a}+\sqrt{b}}\ge=\frac{2^2}{2}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=1\)
Bài 1:
a) Áp dụng BĐT Cô-si:
\(VT=a-1+\frac{1}{a-1}+1\ge2\sqrt{\frac{a-1}{a-1}}+1=2+1=3\)
Dấu "=" xảy ra \(\Leftrightarrow a=2\).
b) BĐT \(\Leftrightarrow a^2+2\ge2\sqrt{a^2+1}\)
\(\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\)
\(\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) ( LĐ )
Dấu "=" xảy ra \(\Leftrightarrow a=0\).
Bài 2: tương tự 1b.
Bài 3:
Do \(a,b,c\) dương nên ta có các BĐT:
\(\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)
Tương tự: \(\frac{b}{a+b+c}< \frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{a+b+c}< \frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng theo vế 3 BĐT:
\(\frac{a+b+c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}\)
\(\Leftrightarrow1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)( đpcm )
Ta có: \(\frac{a^2+b^2}{a-b}\)= \(\frac{a^2-2ab+b^2+2ab}{a-b}\)= \(\frac{\left(a-b\right)^2+2ab}{a-b}\)= (a -b) + \(\frac{2ab}{a-b}\)
Vì a>b>0 nên áp dụng BĐT Cô-Si cho 2 số không âm ta có :
(a - b) +\(\frac{2ab}{a-b}\)\(\ge\)\(2\sqrt{\left(a-b\right)\cdot\frac{2ab}{a-b}}\)= 2\(\sqrt{2ab}\)= \(2\sqrt{2}\)( Vì ab = 1) ( đpcm)
\(\frac{a^2+b^2}{a-b}=\frac{\left(a-b\right)^2+2ab}{a-b}=\left(a-b\right)+\frac{2ab}{a-b}=\left(a-b\right)+\frac{1}{a-b}\)
Vì a>b>0=> \(a-b>0;\frac{1}{a-b}>0\)
Áp dụng bất đẳng thức cô ai ta có:\
\(\left(a-b\right)+\frac{2}{a-b}\ge2\sqrt{\left(a-b\right)\cdot\frac{2}{a-b}}=2\sqrt{2}\)
=>đpcm