K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2018

Ta có \(A=a^2.\left(a+1\right)-b^2.\left(b-1\right)+ab-3ab.\left(a-b+1\right)\)

\(=a^3+a^2-b^3+b^2+ab-3ab-3.a^2.b+3a.b^2\)

\(=a^3-3a^2b+3ab^2-b^3+a^2-2ab+b^2\)

\(=\left(a-b\right)^3+\left(a-b\right)^2\)

\(=7^3-7^2=294\)

5 tháng 11 2016

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

M = (a + b).(a2 - ab + b2) + 3ab[a2 + b2 + 2ab(a + b)]

M = a2 - ab + b2 + 3ab.(a2 + b2 + 2ab)

M = a2 - ab + b2 + 3ab.(a + b)2

M = a2 - ab + b2 + 3ab

M = a2 + b2 + 2ab

M = (a + b)2

M = 1

5 tháng 11 2016

@Võ Đông Anh Tuấn giúp mình với bạn ơi

mình cần gấp lắm

6 tháng 5 2020

\(A=\left[\frac{6x^2}{x^3-1}-\frac{2x-2}{x^2+x+1}-\frac{1}{x-1}\right]:\frac{x^2+9}{\left(x-1\right)\left(9-4x\right)}\)

\(=\left[\frac{6x^2}{x^3-1}-\frac{\left(2x-2\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}-\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)

\(=\frac{6x^2-\left(2x^2-4x+2\right)-x^2-x-1}{\left(x^2+x+1\right)\left(x-1\right)}\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)

\(=\frac{5x^2-2x^2+4x-2-x-1}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)

\(=\frac{3x^2+3x-3}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)

Biểu thức A bạn viết đúng chưa?

24 tháng 11 2018

       \(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Rightarrow\left(2x^2+4xy+2y^2\right)+\left(x^2+2x+1\right)+\left(y^2-2y+1\right)=0\)

\(\Rightarrow2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)

Khi đó: \(A=\left(-1+1\right)^{2014}+\left(-1+2\right)^{2015}+\left(1-1\right)^{2016}\)

\(=0+1+0=1\)

22 tháng 12 2018

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= (a + b)((a + b)2 - 3ab) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2b2

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2 = 1

10 tháng 7 2018

\(-9x^2+12x-15=\left(-11\right)-\left(9x^2-12x+4\right)=\left(-11\right)-\left(3x-2\right)^2\le-11< 0\)

\(-5-\left(x-1\right).\left(x+2\right)=-5-\left(x^2+x-2\right)=-\left(x^2+x+3\right)=-\left(\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\right)\le-\frac{11}{4}< 0\)

6 tháng 5 2018

vì a;b;c >0\(\Rightarrow P=\left(a+1\right)\left(b+1\right)\left(c+1\right)>=2\sqrt{a}2\sqrt{b}2\sqrt{c}=8\cdot\sqrt{abc}=8\cdot1=8\)(bđt cosi)

dấu = xảy ra khi \(a=b=c=1\)

vậy min của P là 8 khi a=b=c=1

Bạn có thể tham khảo tại:

https://olm.vn/hoi-dap/question/922685.html

Chúc bạn học giỏi

11 tháng 9 2018

\(A=a^2\left(a+1\right)-b^2\left(b-1\right)+ab-3ab\left(a-b+1\right)\)

\(A=a^3+a^2-b^3+b^2+ab-3a^2b+3ab^2-3ab\)

\(A=\left(a^3-3a^2b+3ab^2-b^3\right)+\left(a^2-2ab+b^2\right)\)

\(A=\left(a-b\right)^3+\left(a-b\right)^2\)

Thay a - b = 1 vào A

\(A=1+1\)

\(A=2\)