Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\right)\left(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
\(=\left[1-\frac{\sqrt{5}\left(\sqrt{5}+1\right)}{1+\sqrt{5}}\right]\left[\frac{\sqrt{5}\left(\sqrt{5}-1\right)}{1-\sqrt{5}}-1\right]\)
\(=\left(1-\sqrt{5}\right)\left(-\sqrt{5}-1\right)=-\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)=4\)
Bài 1 tìm điều kiện của x để biểu thức sau có nghĩa :
a)
ĐKXĐ : 4 - 3x \(\ge0\) <=> -3x \(\ge-4\Rightarrow x\le\dfrac{4}{3}\)
Vậy ĐKXĐ của x là x \(\le\dfrac{4}{3}\) để biểu thức \(\sqrt{4-3x}\) được xác định
b)
ĐKXĐ : \(-\dfrac{2}{1+2x}\ge0\) . Vì -2 < 0 nên => 1 + 2x < 0 <=> 2x < -1 => x < - \(\dfrac{1}{2}\)
Vậy ĐKXĐ của x là \(x< -\dfrac{1}{2}\)
c) \(\sqrt{7x}-\sqrt{2x-3}\)
Vì 7 > 0 nên => x > 0
ĐKXĐ : 2x - 3 \(\ge0\) <=> 2x \(\ge3=>x\ge\dfrac{3}{2}\)
Vậy ĐKXĐ của x là x > 0 và x \(\ge\dfrac{3}{2}\)
d)
Ta có ĐKXĐ : \(\sqrt{\dfrac{5}{2x+5}}\) \(\ge0\) mà vì 5 > 0 nên => 2x + 5 > 0 <=> 2x > - 5 => x > \(-\dfrac{5}{2}\)
Ta có ĐKXĐ : \(\dfrac{x-1}{x+2}\ge0\) ; x + 2 > 0 => x \(\ne-2\)
Ta có BXD :
x x-1 x+2 -2 1 0 0 0 - - + - + + + + - (x-1)/(x+2)
=> \(x< -2\) hoặc x \(\ge1\)
Vậy ĐKXĐ của x là : x > - \(\dfrac{5}{2}\) ; x < -2 hoặc x \(\ge1\)
mình sửa lại câu b là bỏ đi dấu "=" nhé!
Câu d) ĐK:\(\left\{{}\begin{matrix}\dfrac{5}{2x+5}\ge0\\x+2\ne0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}2x+5>0\\x\ne-2\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x>-\dfrac{5}{2}\\x\ne-2\end{matrix}\right.\)
\(\frac{1}{2+\sqrt{3}}+\frac{1}{2-\sqrt{3}}=\frac{2-\sqrt{3}}{4-3}+\frac{2+\sqrt{3}}{4-3}=2-\sqrt{3}+2+\sqrt{3}=4\)
quy đồng đi
\(=\frac{\left(\sqrt{3-\sqrt{5}}\right)^2+\left(\sqrt{3+\sqrt{5}}\right)^2}{\left(\sqrt{3+\sqrt{5}}\right)\left(\sqrt{3-\sqrt{5}}\right)}=\frac{3-\sqrt{5}+3+\sqrt{5}}{2}=\frac{2\sqrt{5}}{2}=\sqrt{5}\)
\(=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\frac{\left(x-1\right)^2}{2}\)
\(=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{\left(x-1\right)^2}{2}\)
\(=\frac{\left(x-\sqrt{x}-2\right)-\left(x+\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(x-1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\frac{\left(x-1\right)^2}{2}\)\(=\frac{-\sqrt{x}}{\sqrt{x}+1}.\left(x-1\right)=\frac{-x\sqrt{x}+\sqrt{x}}{\sqrt{x}+1}\)
\(=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\frac{\left(x-1\right)^2}{2}\)
\(=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{\left(x-1\right)^2}{2}\)
\(=\frac{\left(x-\sqrt{x}-2\right)-\left(x+\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(x-1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\frac{\left(x-1\right)^2}{2}\)\(=\frac{-\sqrt{x}}{\sqrt{x}+1}.\left(x-1\right)=\frac{-x\sqrt{x}+\sqrt{x}}{\sqrt{x}+1}\)
a) = . = . = vì x > 0.
Do đó = .
b) = . = ..
Vì y < 0 nên │y│= -y. Do đó = . = .
c) 5xy. = 5xy. = 5xy..
Vì x < 0, y > 0 nên = -x và = .
Do đó: 5xy = 5xy. = -.
d) 0,2 = = 0,2 =
Nếu x > 0 thì > 0 nên . Do đó 0,2 = .
Nếu x < 0 thì < 0 nên . Do đó 0,2 = -.
a) = . = . = vì x > 0.
Do đó = .
b) = . = ..
Vì y < 0 nên │y│= -y. Do đó = . = .
c) 5xy. = 5xy. = 5xy..
Vì x < 0, y > 0 nên = -x và = .
Do đó: 5xy = 5xy. = -.
d) 0,2 = = 0,2 =
Nếu x > 0 thì > 0 nên . Do đó 0,2 = .
Nếu x < 0 thì < 0 nên . Do đó 0,2 = -.
ê mình bấm lộn cái trả lời bênh kia nha
bài làm : điều kiện : x ; y \(\ne\) 0
đặc \(\dfrac{1}{x}\) là a ; \(\dfrac{1}{y}\) là b (a ; b \(\ne\) 0)
hệ phương trình \(\Leftrightarrow\)\(\left\{{}\begin{matrix}a+b=\dfrac{3}{4}\\\dfrac{a}{6}+\dfrac{b}{5}=\dfrac{2}{15}\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}6a+6b=\dfrac{9}{2}\\5a+6b=4\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=\dfrac{1}{2}\\\dfrac{1}{2}+b=\dfrac{3}{4}\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{1}{4}\end{matrix}\right.\)
a = \(\dfrac{1}{x}\) = \(\dfrac{1}{2}\) \(\Leftrightarrow\) x = 2
b = \(\dfrac{1}{y}\) = \(\dfrac{1}{4}\) \(\Leftrightarrow\) y = 4
vậy hệ phương trình có nghiệm duy nhất (x = 2 ; y = 4)
ĐKXĐ: \(x,y\ne0\)
Đặt \(\dfrac{1}{x}=a,\dfrac{1}{y}=b\left(a,b\ne0\right)\) , ta có:
\(\left\{{}\begin{matrix}a+b=\dfrac{3}{4}\\\dfrac{a}{6}+\dfrac{b}{5}=\dfrac{2}{15}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=\dfrac{3}{4}\\5a+6b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a+5b=\dfrac{15}{4}\\5a+6b=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{4}\\a+\dfrac{1}{4}=\dfrac{3}{4}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{4}\\a=\dfrac{1}{2}\end{matrix}\right.\) (tmđk) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{4}\\\dfrac{1}{x}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=2\end{matrix}\right.\) (tmđk)
Vậy hệ phương trình đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(2;4\right)\)