Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. A = \(\dfrac{3n-7}{n-1}=\dfrac{3n-3}{n-1}+\dfrac{-7}{n-1}=3+\dfrac{-7}{n-1}\)
Tại giá trị \(A\notin Z,3\in Z\)\(\Rightarrow\dfrac{-7}{n-1}\in Z\)\(\Rightarrow n-1\inƯ\left(-7\right)\) với \(x\ne1\) (mẫu sẽ có giá trị là 0 nếu x = 1)
Tại \(n-1=7\)\(\Leftrightarrow n=7+1=8\)
Tại \(n-1=-7\Leftrightarrow n=-7+1=-6\)
Tại \(n-1=1\Leftrightarrow n=1+1=2\)
Tại \(n-1=-1\Leftrightarrow n=-1+1=0\)
2. B = \(\dfrac{4n+1}{2n-3}=\dfrac{4n+6}{2n-3}+\dfrac{-5}{2n-3}=2+\dfrac{-5}{2n-3}\)
Tại giá trị \(B\in Z,2\in Z\)\(\Rightarrow\dfrac{-5}{2n-3}\in Z\)\(\Rightarrow2n-3\inƯ\left(-5\right)\) với \(x\ne\dfrac{3}{2}\)
Tại \(2n-3=5\Leftrightarrow2n=8\Leftrightarrow n=4\)
Tại \(2n-3=-5\Leftrightarrow2n=-2\Leftrightarrow n=-1\)
Tại \(2n-3=1\Leftrightarrow2n=4\Leftrightarrow n=2\)
Tại \(2n-3=-1\Leftrightarrow2n=2\Leftrightarrow n=1\)
1, TH1: x = 1 => n4 + 4 = 5 là số nguyên tố
TH2: x >= 2 => n4 \(\equiv\)1 (mod 5)
=> n4 + 4 \(⋮\)5 (ko là số nguyên tố)
1,
Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)
\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)
\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)
Dấu "=" xảy ra khi x = 0, y = 13
Vậy Pmin = 6/7 khi x = 0, y = 13
2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)
Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6
3,
Ta có: \(10\le n\le99\)
\(\Rightarrow20\le2n\le198\)
\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)
\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)
\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)
Ta thấy chỉ có 36 là số chính phương
Vậy n = 32
4,
ÁP dụng TCDTSBN ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)
\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)
\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)
Vậy B = 8
Ta có: \(\frac{a}{2017}=\frac{b}{2018}=\frac{c}{2019}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{2017}=\frac{b}{2018}=\frac{c}{2019}=\frac{a-b}{2017-2018}=\frac{b-c}{2018-2019}=\frac{a-c}{2017-2019}.\)
\(\Rightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{a-c}{-2}\)
\(\Rightarrow\frac{a-b}{-1}.\frac{b-c}{-1}=\left(\frac{a-c}{-2}\right)^2\)
\(\Rightarrow\frac{\left(a-b\right).\left(b-c\right)}{1}=\frac{\left(a-c\right)^2}{\left(-2\right)^2}\)
\(\Rightarrow\frac{\left(a-b\right).\left(b-c\right)}{1}=\frac{\left(a-c\right)^2}{4}.\)
\(\Rightarrow4.\left(a-b\right).\left(b-c\right)=\left(a-c\right)^2.1\)
\(\Rightarrow4.\left(a-b\right).\left(b-c\right)=\left(a-c\right)^2\left(đpcm\right).\)
Chúc bạn học tốt!
c) n2 + 404 = x2 (x thuộc N*)
=> x2 - n2 = 404
=> (x - n)(x + n) = 1.404 = 2.202 = 4.101
Mà x - n và x + n luôn cùng tính chẵn lẻ và x - n < x + n
=> x - n = 2; x + n = 202
=> n = (202 - 2) : 2 = 100
a) Ta có: \(A=\left|x+2009\right|+\left|x-1\right|=\left|x+2009\right|+\left|1-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A\ge\left|x+2009+1-x\right|=\left|2010\right|=2010\)
Dấu " = " xảy ra khi \(x+2009\ge0;1-x\ge0\)
\(\Rightarrow x\ge-2009;x\le1\)
Vậy \(MIN_A=2010\) khi \(-2009\le x\le1\)
b) Giải:
Ta có: \(2n-1⋮n-4\)
\(\Rightarrow2n-8+7⋮n-4\)
\(\Rightarrow2\left(n-4\right)+7⋮n-4\)
\(\Rightarrow7⋮n-4\)
\(\Rightarrow n-4\in\left\{1;-1;7;-7\right\}\)
\(\left[\begin{matrix}n-4=1\\n-4=-1\\n-4=7\\n-4=-7\end{matrix}\right.\Rightarrow\left[\begin{matrix}n=5\\n=3\\n=11\\n=-3\end{matrix}\right.\)
Vậy \(n\in\left\{5;3;11;-3\right\}\)
a: để P là số nguyên thì \(3n-3+5⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
b: Để Q là số nguyên thì \(3\left|n\right|-1+2⋮3\left|n\right|-1\)
\(\Leftrightarrow3\left|n\right|-1\in\left\{1;-1;2\right\}\)
\(\Leftrightarrow\left|n\right|\in\left\{0;1\right\}\)
hay \(n\in\left\{0;1;-1\right\}\)
Câu 1:
Ta sẽ chỉ ra rằng một số lập phương \(a^3\) chia 7 chỉ có thể có dư là 0,1,6
Thật vậy:
Nếu \(a\equiv 0\pmod 7\Rightarrow a^3\equiv 0\pmod 7\)
Nếu \(a\equiv 1\pmod 7\Rightarrow a^3\equiv 1\pmod 7\)
Nếu \(a\equiv 2\mod 7\Rightarrow a^3\equiv 2^3\equiv 1\pmod 7\)
Nếu \(a\equiv 3\pmod 7\Rightarrow a^3\equiv 3^3\equiv 6\pmod 7\)
Nếu \(a\equiv 4\pmod 7\Rightarrow a^3\equiv 4^3\equiv 1\pmod 7\)
Nếu \(a\equiv 5\pmod 7\Rightarrow a^3\equiv 5^3\equiv 6\pmod 7\)
Nếu \(a\equiv 6\pmod 7\Rightarrow a^3\equiv 6^3\equiv (-1)^3\equiv 6\pmod 7\)
Do đó một số lập phương chia cho 7 luôn có dư là 0,1,6
Mà \(2016n+3=7.288n+3\) chia 7 dư 3
Do đó A không thể là số lập phương với mọi n
Vậy không tồn tại n thỏa mãn.
Bài 2:
Không mất tính tổng quát giả sử \(a\geq b\geq c\)
Để A là số nguyên thì \((ab-1)(bc-1)(ca-1)\vdots abc\)
\(\Leftrightarrow (ab^2c-ab-bc+1)(ac-1)\vdots abc\)
\(\Leftrightarrow a^2b^2c^2-abc(a+b+c)+ab+bc+ac-1\vdots abc\)
\(\Leftrightarrow ab+bc+ac-1\vdots abc\)
Đặt \(ab+bc+ac-1=kabc\Rightarrow k=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{abc}< \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq 1+1+1\)
\(\Leftrightarrow k< 3\Rightarrow k\in\left\{1;2\right\}\)
TH1 : $k=1$
Thay vào : \(ab+bc+ac-1=abc\Leftrightarrow 1=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{abc}\)
Theo giả sử suy ra \(\frac{1}{a}\leq \frac{1}{b}\leq \frac{1}{c}\)
\(\Rightarrow 1\leq \frac{3}{c}-\frac{1}{abc}< \frac{3}{c}\Rightarrow c<3 \Rightarrow c\in\left\{1;2\right\}\)
+) \(c=1\Rightarrow ab+a+b-1=ab\Leftrightarrow a+b=1\) (vô lý vì \(a\geq b\geq 1\) )
+) \(c=2\Rightarrow ab+2a+2b-1=2ab\Leftrightarrow 2a+2b-1=ab\)
\(\Leftrightarrow (a-2)(b-2)=3\) (1)
Vì \(a\geq b\geq c\geq 2\Rightarrow a-2\geq b-2\geq 0\) (2)
(1),(2) suy ra \(\left\{\begin{matrix} a-2=3\\ b-2=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=5\\ b=3\end{matrix}\right.\)(thỏa mãn)
TH2: $k=2$
Thay vào: \(ab+bc+ac-1=2abc\Leftrightarrow 2=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{abc}\)
\(\Rightarrow 2\leq \frac{3}{c}-\frac{1}{abc}< \frac{3}{c}\Rightarrow c< \frac{3}{2}\)
Do đó \(c=1\Rightarrow ab+a+b-1=2ab\)
\(\Leftrightarrow a+b-1=ab\Leftrightarrow (a-1)(b-1)=0\)
+) Nếu \(a=1\Rightarrow b\leq a=1\Rightarrow b=1\)
+) Nếu $b=1$ thì $a$ là số tự nhiên tùy ý lớn hơn hoặc bằng 1
Vậy \((a,b,c)=(5;3;2)\) và hoán vị, hoặc \((a,b,c)=(k,1,1)\) và hoán vị với \(k\in\mathbb{N}^*\) tùy ý.