K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2019

cái này phải  dùng nguyên lí đi rích lê

nguyên lí đi dép lê á? :)))

14 tháng 10 2019

Chia hình chữ nhật 4 x 3 thành 24 hình chữ nhật \(\frac{1}{2}\times1\).

Diện tích mỗi hình chữ nhật \(\frac{1}{2}\times1\) là \(\frac{1}{2}\left(cm^2\right)\)

G/s : Mỗi  hình chữ nhật  chỉ chứa ít hơn 3 điểm 

Tổng số điểm của hình chữ nhật  3 x 4 thì sẽ < 2.24 = 48 điểm <49 điểm ( vô lí)

=> Theo nguyên lí Dirichlet sẽ tồn tại một hình chữ nhật \(\frac{1}{2}\times1\)  chứa ít nhất  3 điểm trong 49 điểm đã cho.

Tam giác có 3 đỉnh nằm trong hình chữ nhật \(\frac{1}{2}\times1\) nên diện tích < \(\frac{1}{2}\left(cm^2\right)\)

Vậy ....

23 tháng 11 2017

mình làm cách này nhé:
gọi O, I là giao 2 đường chéo của hv ABCD và A'B'C'D'
ta có :
PO//=MI
QO//=IN
suy ra tam giác POQ= tam giác MIN (c-g-c)
tương tự PON=MIQ(c-g-c)
từ đó lấy góc và cạnh sẽ được

21 tháng 2 2017

Bạn tự vẽ hình nhé! không cần kẻ thêm hình phụ

Chú Y: Tỷ lệ diện tích = bình phương tỷ số đồng dạng nhé

Có: \(\Delta MAB\)đồng dạng \(\Delta MCD\)với tỷ số đồng dạng là: \(\frac{AB}{CD}=\frac{1}{3}\)

=> \(\frac{S_{\Delta MAB}}{S_{\Delta MCD}}=\left(\frac{1}{3}\right)^2\Rightarrow S_{\Delta MCD}=9S_{\Delta MAB}=9.6=54\)

=> diện tích hình thang là: 54-6=48

22 tháng 2 2017

cảm ơn

1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Qchứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)= \(\frac{1}{a}\)2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE3) cho tam giác ABC vuông...
Đọc tiếp

1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Q

chứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)\(\frac{1}{a}\)

2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE

3) cho tam giác ABC vuông tại A, đường cao AH, phân giác góc ABC cắt đường cao AH tại E cắt AC tại D.

chứng minh rằng \(\frac{AE}{EH}=\frac{DC}{DA}\)

4) cho tam giác ABC, M là điểm thuộc cạnh BC. Chứng minh: AM.BC<AM.MC+AC.MB

5) cho tam giác ABC vuông tại A ( góc B lớn hơn góc C). lấy điểm D trên cạnh AC sao cho góc ABD bằng góc C.

chứng minh \(\frac{1}{BD^2}+\frac{1}{BC^2}=\frac{1}{AB^2}\)

giúp mình với :3. mình sắp thi rồi

p/s không biết làm bài nào chứ không phải lười đâu :((

0

a) Xét ΔAEF và ΔADC có 

\(\dfrac{AE}{AD}=\dfrac{AF}{AC}\left(\dfrac{3}{4}=\dfrac{6}{8}\right)\)

\(\widehat{A}\) chung

Do đó: ΔAEF∼ΔADC(c-g-c)

b) Ta có: ΔAEF∼ΔADC(cmt)

nên \(\widehat{AEF}=\widehat{ADC}\)(hai góc tương ứng) và \(\widehat{AFE}=\widehat{ACD}\)(hai góc tương ứng)

Xét ΔIDF và ΔIEC có 

\(\widehat{ICE}=\widehat{IFD}\)(cmt)

\(\widehat{DIF}=\widehat{EIC}\)(hai góc đối đỉnh)

Do đó: ΔIDF∼ΔIEC(g-g)

Suy ra: \(k=\dfrac{DF}{EC}=\dfrac{AF-AD}{AC-AE}=\dfrac{6-4}{8-3}=\dfrac{2}{5}\)