K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2017

b, ta có

8\((x)^{9}\)-\(9(x)^{8} +1 \)= (8x^9 -8x^8)-(x^8-1)

=8x^8(x-1)-(x-1)(x^7+x^6+x^5+...+x+1)

=(x-1)(8x^8-x^7-x^6-......-x-1)

=(x-1)[(x^8-x^7)+(x^8-x^6)+.....+(x^8-1)]

=(x-1)[x^7(x-1)+ x^6(x^2-1)+.......+(x-1).(x^7+x^6+.....+x+1)]

=(x-1)^2.[x^7+x^6(x+1)+x^5(x^2+x+1)+.....+(x^7+x^6+...+x+1)]

\(\Rightarrow\) C chia hết cho D(dpcm)

2 tháng 7 2019

a, Ta có:\(\left(4x^2-2xy+y^2\right)\left(2x+y\right)\)

\(=8x^3+4x^2y-4x^2y-2xy^2+2xy^2+y^3\)

\(=8x^3+y^3\)

\(\Rightarrow\left(4x^2-2xy+y^2\right)\left(2x+y\right)=8x^3+y^3\)

2 tháng 7 2019

b,Ta có: \(\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)

\(=x^7-x^6+x^5-x^3+x^2+x^6-x^5+x^4-x^2+x+x^5-x^4+x^3-x+1\)

(rồi bạn nhóm vào trừ cho nhau)

\(=x^7+x^5+1\)

12 tháng 5 2018

bt2.

A=[2(4x^2+4x+5)-2]/(4x^2+4x+5)

=2-2/[(4x+1)^2+4]

A>=2-2/4=3/2

khi x=-1/4

a) Ta có: \(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\)

\(=\left(2x\right)^3+\left(\frac{1}{3}\right)^3-8x^3+\frac{1}{27}\)

\(=8x^3+\frac{1}{27}-8x^3+\frac{1}{27}\)

\(=\frac{2}{27}\)

Vậy: Giá trị của biểu thức \(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\) không phụ thuộc vào biến

b) Ta có: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\)

\(=x^3-3x^2+3x-1-\left(x^3-1\right)-3x\left(1-x\right)\)

\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)

\(=0\)

Vậy: Giá trị của biểu thức \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\) không phụ thuộc vào biến

c) Ta có: \(y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)

\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)

\(=yx^4-y^5-yx^4+y^5\)

\(=0\)

Vậy: Giá trị của biểu thức \(y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\) không phụ thuộc vào biến

24 tháng 10 2018

khong biet

24 tháng 10 2018

tui đếch bt vì tui mới hk lớp 5  thôi à

19 tháng 9 2018

a,\(A=\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)

\(A=x^3-1-\left(x^3+1\right)=-2\) (const)

b,\(B=2x\left(4x+1\right)-8x^2\left(x+1\right)+\left(2x\right)^3-2x+3\)

\(=8x^2+2x-8x^3-8x^2+8x^3-2x+3\)

\(\Rightarrow B=3\) (const)

Vậy giá trị của đa thức không phụ thuộc vào x.