\(2x^2+2x+1>0\) với mọi x

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(2x^2+2x+1\)

\(=2\left(x^2+x+\frac{1}{2}\right)\)

\(=2\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)\)

\(=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\)

Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall x\)

hay \(2x^2+2x+1>0\forall x\)(đpcm)

23 tháng 9 2020

Này giải chi tiết cho mk cái bước 3 và 4 đi Nguyễn Lê Phước Thịnh

23 tháng 9 2020
https://i.imgur.com/QBCcqpP.jpg
23 tháng 9 2020

Đặt 2 ra ngoài thì đỡ phải dùng căn đó bnbanhqua

25 tháng 3 2018

Ta có:     \(x^2+2x+5\)

       \(=x^2+2x+1+4\)

       \(=\left(x+1\right)^2+4\)\(>0\)      \(\forall x\)

\(\Rightarrow\)\(x^2+2x+5>0\)  \(\forall x\)

hay BĐT luôn có nghiệm với mọi x

P/S: trình bày sai chỗ nào m.n góp ý mk nhé

AH
Akai Haruma
Giáo viên
23 tháng 9 2020

Lời giải:

$x^2+x+1=x^2+2.x.\frac{1}{2}+(\frac{1}{2})^2+\frac{3}{4}$

$=(x+\frac{1}{2})^2+\frac{3}{4}$

$\geq 0+\frac{3}{4}$

$> 0$

Ta có đpcm.

AH
Akai Haruma
Giáo viên
23 tháng 9 2020

Lời giải:

Ta thấy:

$9x^2-6x+2=(9x^2-6x+1)+1$

$=[(3x)^2-2.3x+1^2]+1=(3x-1)^2+1$

Vì $(3x-1)^2\geq 0$ với mọi $x$

$\Rightarrow 9x^2-6x+2=(3x-1)^2+1\geq 1>0$ với mọi $x$

Ta có đpcm.

11 tháng 6 2018

_______________Bài làm___________________

a, \(x^2+xy+y^2+1\)

\(=\left(x^2+2x\dfrac{y}{2}+\dfrac{y^2}{4}\right)+\dfrac{3y^2}{4}+1=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^3}{4}+1\)

Do \(\left(x+\dfrac{y}{2}\right)^2\ge0\forall x,y\)

\(\dfrac{3y^2}{4}\ge0\forall y\)

Nên: \(\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0\forall x,y=>đpcm\)

b, \(x^2+5y^2+2x-4xy-10y+14\)

\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+\left(y^2-6y+9\right)+5\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+\left(y-3\right)^2+5\)

\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\)

Do \(\left(x-2y+1\right)^2\ge0\forall x,y\)

\(\left(y-3\right)^2\ge0\forall y\)

Nên \(\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\)

c, \(5x^2+10y^2-6xy-4x-2y+3\)

\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-2x+1\right)+\left(y^2-2y+1\right)+1\)

\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\)

Do .........

tự làm ik

19 tháng 9 2016

b)

\(-x^2+2x-6=-\left(x^2-2x+6\right)\)

\(=-\left(x^2-2x+1+5\right)=-\left(x+1\right)^2-6\)

vì \(\left(x-1\right)^2\ge0\)với mọi \(x\in R\)

nên \(-\left(x-1\right)^2\le0\)với mọi \(x\in R\)

do đó \(-\left(x-1\right)-5< 0\)với mọi \(x\in R\)

vậy \(-x^2+2x-6< 0\)với mọi \(x\in R\)

19 tháng 9 2016

a) \(x^2+2x+7=x^2+2x+1+6\)

                            \(=\left(x+1\right)^2+6\)

vì \(\left(x+1\right)^2\ge0\)với mọi \(x\in R\)

nên \(\left(x+1\right)^2+6>0\)với mọi \(x\in R\)

vậy \(x^2+2x+7>0\)với mọi \(x\in R\)

2 tháng 11 2019

Một cửa hàng ngày đầu bán được 3 tạ 16 kg gạo, ngày sau bán được hơn ngày đầu 3,5 yến. Hỏi cả hai ngày bán đươc bao nhiêu tạ gạo ?

2 tháng 11 2019

các bạn giải giúp mình với trong vòng từ 5h đến 6h nhé