Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Kẻ đường cao AD \(\left(D\in BC\right)\)
Xét tam giác ABD:
\(IB=IA;\)IH//AD(\(\perp BD\))
=> \(IH=\frac{1}{2}AD\)
Xét \(\Delta ABC\):
\(\frac{1}{AD^2}=\frac{1}{AC^2}+\frac{1}{AB^2}\)
\(\Rightarrow\frac{1}{4IH^2}=\frac{1}{AC^2}+\frac{1}{AB^2}\)
b) Xét \(\Delta ABC\):
\(AC^2=CD.CB\)
\(AC^2+BH^2=CH^2\)
\(\Leftrightarrow CD.CB+BH^2=\left(CD+BH\right)^2\)
\(\Leftrightarrow CD.CB+BH^2=CD^2+BH^2+2CD.BH\)
\(\Leftrightarrow CD^2+2CD.BH-CD.CB=0\)
\(\Leftrightarrow CD\left(CD+BH+BH-CB\right)=0\)
\(\Leftrightarrow CD\left(CD+BD-CD-BD\right)=0\)
\(\Leftrightarrow CD.0=0\left(LĐ\right)\)
Vậy \(AC^2+BH^2=CH^2\)(đpcm).
Kẻ đg cao AD của ΔABC
+ IH là đg trung bình của ΔABD
\(\Rightarrow\left\{{}\begin{matrix}AD=2IH\Rightarrow AD^2=4IH^2\\BH=DH\end{matrix}\right.\)
+ ΔABC vuông tại A, đg cao AD
\(\Rightarrow\frac{1}{AD^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
\(\Rightarrow\frac{1}{4IH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
b) Mk sửa đề xíu : \(AC^2+BH^2=CH^2\)
+ ΔABC vuông tại A, đg cao AD
\(\Rightarrow AD^2=BD\cdot CD=2DH\cdot CD\)
+ \(AC^2+BH^2=CD^2+AD^2+DH^2\)
\(=CD^2+2\cdot DH\cdot CD+DH^2\)
\(=\left(CD+DH\right)^2=CH^2\)
App giải toán không cần nhập đề chỉ cần chụp ảnh cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618
Lời giải:
a) Áp dụng đl Pitago cho các tam giác vuông $BHE, CHF$:
\(BC^2=(BH+CH)^2=BH^2+CH^2+2BH.CH\)
\(=BE^2+EH^2+FH^2+CF^2+2BH.CH\)
\(=(EH^2+HF^2)+2BH.CH+BE^2+CF^2(1)\)
Xét tứ giác $AEHF$ có 3 góc vuông \(\widehat{EAF}=\widehat{HFA}=\widehat{AEH}=90^0\) nên $AEHF$ là hình chữ nhật
\(\Rightarrow HF=EA\)
Do đó: \(EH^2+HF^2=EH^2+EA^2=AH^2(2)\) (theo định lý Pitago)
Xét tam giác $BAH$ và $ACH$ có:
\(\widehat{BAH}=\widehat{ACH}(=90^0-\widehat{HAC})\)
\(\widehat{BHA}=\widehat{AHC}=90^0\)
\(\Rightarrow \triangle BAH\sim \triangle ACH(g.g)\Rightarrow \frac{BH}{AH}=\frac{AH}{CH}\Rightarrow BH.CH=AH^2(3)\)
Từ \((1);(2);(3)\Rightarrow BC^2=AH^2+2.AH^2+BE^2+CF^2=3AH^2+BE^2+CF^2\)
(đpcm)
b)
Xét tam giác $BAH$ và $BCA$ có:
\(\widehat{B}\) chung
\(\widehat{BHA}=\widehat{BAC}=90^0\)
\(\Rightarrow \triangle BAH\sim \triangle BCA(g.g)\Rightarrow \frac{BA}{BH}=\frac{BC}{BA}\)
\(\Rightarrow BH=\frac{BA^2}{BC}(4)\)
Hoàn toàn tương tự: \(\triangle CAH\sim \triangle CBA(g.g)\Rightarrow CH=\frac{CA^2}{BC}(5)\)
Từ \((4);(5)\Rightarrow \frac{BH}{CH}=\frac{BA^2}{BC}:\frac{CA^2}{BC}=\frac{BA^2}{CA^2}\) (đpcm)
c)
Hoàn toàn tương tự như cách CM tam giác đồng dạng phần b, ta có:
\(\triangle BHE\sim \triangle BAH(g.g)\Rightarrow \frac{BH}{BA}=\frac{BE}{BH}\Rightarrow BE=\frac{BH^2}{AB}\)
\(\triangle CHF\sim \triangle CAH(g.g)\Rightarrow \frac{CH}{CA}=\frac{CF}{CH}\Rightarrow CF=\frac{CH^2}{CA}\)
Do đó, kết hợp với kết quả phần b:
\(\frac{BE}{CF}=\frac{BH^2}{AB}:\frac{CH^2}{CA}=(\frac{BH}{CH})^2.\frac{CA}{AB}=\frac{AB^4}{AC^4}.\frac{AC}{AB}=\frac{AB^3}{AC^3}\) (đpcm)
d) Ta có:
\(BC.HE.HF=BC.\frac{HE.BA}{BA}.\frac{HF.AC}{AC}=BC.\frac{2S_{BHA}}{BA}.\frac{2S_{CHA}}{CA}\)
\(=BC.\frac{BH.AH}{BA}.\frac{CH.AH}{CA}=\frac{BC.AH}{AB.AC}.AH.BH.CH\)
\(=\frac{2S_{ABC}}{2S_{ABC}}.AH.AH^2\) (theo (3))
\(=AH^3\) (đpcm)