Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thiếu rồi. dầy đủ phải là trên BC lấy D , trên tia đối của CB lấy E để BD=CE. Trên tia đối của CA lấy I để CI=CA.
a b c m d h e
câu a
tam giác abc cân a
=> ab = ac (tính chất)
tam giác abe và tam giác acd có
chung góc a
ab=ac
ad=ae
=> tam giác abe = tam giác acd (cgc)
câu b
từ câu a
=> góc e = góc d
mà góc e = 90 độ
=> góc d = 90 độ
=> cd là đưòng cao
tam giác abc có đưòng cao be và cd giao tại h
=> h là trực tâm
câu c
từ câu b
=> ah là đường cao
=> ah đồng thời là đường trung tuyến
mà am là đường trung tuyến
=> ah trùng am
=> a,m,h thẳng hàng
câu d
tam giác cbd vuông tại d có dm là đưòng trung tuyến ứng với cạnh huyền bc
\(dm=\dfrac{bc}{2}\\ =>bc=2.dm\)
chúc may mắn :)
a) Vì tam giác ABC vuông tại A(gt)
=)Â=90 độ
=)tam giác BAD là tam giác vuông tại A
Vì DE vuông góc vs BC (gt)
=)Ê =90 độ
=)tam giác BED là tam giác vuông tại E
xét tam giác BAD vuông tại A và tam giác BED vuông tại E có
Góc ABD =Góc EBD(vì BD là tia phân giác)
BD là cạnh chung
=) tam giác BAD=tam giác BED(ch-cgv)
Xét 2 tam giác vuông ABD và EBD có
Góc ABD=góc EBD(gt)
Cạnh huyền BD chung
=)) tam giác ABD=tam giácEBD (ch-gn)
hình tự vẽ
a)Vì AD là tpg của ^BAC
=>^BAD = ^CAD = ^BAC/2
Xét tam giác ABD và tam giác AED có:
AD:cạnh chung
^BAD=^CAD(cmt)
AB=AE(gt)
=>tam giác ABD=tam giác AED (c.g.c)
=>BD=BE (cặp cạnh t.ư)
b)Vì tam giác ABD=tam giác AED(cmt)
=>^ABD=^AED (cặp góc t.ư)
Ta có:^ABD+^KBD=1800 (kề bù)
=>^KBD=1800-^ABD (1)
^AED+^CED=1800 (kề bù)
=>^CED=1800-^AED(2)
Từ (1);(2);có ^ABD=^AED(cmt)
=>^KBD=^CED
Xét tam giác DBK và tam giác DEC có:
BD=BE(cmt
^KBD=^CED(cmt)
^BDK=^EDC (2 góc đđ)
=>tam giác DBK=tam giác DEC (g.c.g)
Từ tam giác DBK=tam giác DEC(cmt)
=>BK=EC (cặp cạnh t.ư)
Ta có: AB+BK=AK (B thuộc AK)
AE+EC=AC (E thuộc AC0
mà BK=EC(cmt);AB=AE(gt)
=>AK=AC
Xét tam giác AKC có:AK=AC(cmt)
=>tam giác AKC cân (ở A) (DHNB)
d)sai đề
....Có ở trong sách bài tập toán 7 (tập II) mà bn......:))
Xét \(\Delta\) ADB có :
AD < AB + BD ( Bất đẳng thức tam giác )
Xét \(\Delta\)ADC có :
AD < AC + CD ( Bất đẳng thức tam giác )
Cộng hai vế của đẳng thức lại với nhau,ta có :
2AD < AB + BD + AC + CD
=> 2AD < AB + AC +(BD + CD)
=> 2AD < AB + AC + BC
hay AD < \(\dfrac{AB+AC+BC}{2}\)(nửa chu vi tam giác ABC) ( đpcm)