K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2021

Thu gọn và sắp xếp các hạng tử của đa thức A(x) = x5 + x3 - x2 + 2x3 -525

A. A(x) = x5 + x3 - x2 -1                                      B. A(x) = x5 - x3 + x2 -1

C. A(x) = x5 + 3x3 - x2                                         D. A(x) = x5 + 3x3 - x2 -1

a ) Q ( x ) = [ P ( x ) + Q ( x ) ] - P ( x ) =  ( x- 2x+ 1 ) - ( x- 3x2+\(\frac{1}{2}\)- x ) = x- 2x+ 1 - x4  + 3x2 - \(\frac{1}{2}\)+ x 

= x-  x- ( 2x2 - 3x) + x + \(\frac{1}{2}\) 

= x-  x4 + x2 + x + \(\frac{1}{2}\) 

29 tháng 3 2016

1)x+2x=0

=>x(x+2)=0

Xét x=0 hoặc x+2=0

                      x=-2

Vậy x=0 hoặc x=-2

2)x+2x-3=0

=x-1x+3x-3=0

=x(x-1)+3(x-1)=0

=(x-1)(x-3)=0

Xét x-1=0 hoặc x-3=0

     x=1            x=3

Tự KL nha

1/ Tìm nghiệm của đa thức:a. x2+\({\sqrt{3}}\) b. x2+2xc. x2+2x-32/ Xác định hệ số m để các đa thức sau nhận 1 làm một nghiệm :a. mx2+2x+8b. 7x2+mx-1c. x5-3x2+m3/ Cho đa thức: f(x): x2+mx+2a. Xác định m để f(x) nhận -2 làm một nghiệm.b. Tìm tập hợp các nghiệm của f(x) ứng với giá trị vừa tìm được của m.4/ Cho biết: (x-1)f(x)=(x-4)f(x-8) với mọi xCM: f(x) có ít nhất 2 nghiệm.5/ Tìm đa thức f(x) rồi tìm...
Đọc tiếp

1/ Tìm nghiệm của đa thức:

a. x2+\({\sqrt{3}}\) 

b. x2+2x

c. x2+2x-3

2/ Xác định hệ số m để các đa thức sau nhận 1 làm một nghiệm :

a. mx2+2x+8

b. 7x2+mx-1

c. x5-3x2+m

3/ Cho đa thức: f(x): x2+mx+2

a. Xác định m để f(x) nhận -2 làm một nghiệm.

b. Tìm tập hợp các nghiệm của f(x) ứng với giá trị vừa tìm được của m.

4/ Cho biết: (x-1)f(x)=(x-4)f(x-8) với mọi x

CM: f(x) có ít nhất 2 nghiệm.

5/ Tìm đa thức f(x) rồi tìm nghiệm của f(x) biết rằng: 

x3+2x2(4y-1)-4xy2-9y3-f(x)=-53+8 x2y-4xy2-9y3

6/ Cho S=abc+bca+cab

CM: S không phải là số chính phương.

7/ Tìm các số có 3 chữ số sao cho hiệu của số ấy và số gồm 3 chữ số ấy viết theo thứ tự ngươc lại là 1 số chính phương.

8/ Tìm số tự nhiên abc (a>b>c>0) sao cho abc+bca+cab=666

(Mọi người dùng kiến thức lớp 7 để giải nhe.)

0
1/ Tìm nghiệm của đa thức:a. x2+\(\sqrt{3}\)​ b. x2+2xc. x2+2x-32/ Xác định hệ số m để các đa thức sau nhận 1 làm một nghiệm :a. mx2+2x+8b. 7x2+mx-1c. x5-3x2+m3/ Cho đa thức: f(x): x2+mx+2a. Xác định m để f(x) nhận -2 làm một nghiệm.b. Tìm tập hợp các nghiệm của f(x) ứng với giá trị vừa tìm được của m.4/ Cho biết: (x-1)f(x)=(x-4)f(x-8) với mọi xCM: f(x) có ít nhất 2 nghiệm.5/ Tìm đa thức f(x) rồi tìm...
Đọc tiếp

1/ Tìm nghiệm của đa thức:

a. x2+\(\sqrt{3}\)​ 

b. x2+2x

c. x2+2x-3

2/ Xác định hệ số m để các đa thức sau nhận 1 làm một nghiệm :

a. mx2+2x+8

b. 7x2+mx-1

c. x5-3x2+m

3/ Cho đa thức: f(x): x2+mx+2

a. Xác định m để f(x) nhận -2 làm một nghiệm.

b. Tìm tập hợp các nghiệm của f(x) ứng với giá trị vừa tìm được của m.

4/ Cho biết: (x-1)f(x)=(x-4)f(x-8) với mọi x

CM: f(x) có ít nhất 2 nghiệm.

5/ Tìm đa thức f(x) rồi tìm nghiệm của f(x) biết rằng: 

x3+2x2(4y-1)-4xy2-9y3-f(x)=-53+8 x2y-4xy2-9y3

6/ Cho S=abc+bca+cab

CM: S không phải là số chính phương.

7/ Tìm các số có 3 chữ số sao cho hiệu của số ấy và số gồm 3 chữ số ấy viết theo thứ tự ngươc lại là 1 số chính phương.

8/ Tìm số tự nhiên abc (a>b>c>0) sao cho abc+bca+cab=666

(Mọi người dùng kiến thức lớp 7 để giải nhe.)

0
I/ Trắc nghiệm: Câu 1: Gía trị của biểu thức x3y - x2y2 -5 tại x = 1; y = -1 là: A. 0 B. -7 C. 1 D. 6 Câu 2: Kết quả phép nhân hai đơn thức (-\(\dfrac{1}{3}\)x3y)2. (-9x2yz2) là: A. x7y3z2 B. (-x8y3z2) C. x8y3z2 D. Một kết quả khác Câu 3: Bậc của đa thức 7x4 - 4x + 6x3 - 7x4 + x2 + 1 là: A. 0 B. 4 C. 3 D. 7 Câu 4: Nghiệm của đa thức P(x) = 3x + \(\dfrac{1}{5}\)...
Đọc tiếp

I/ Trắc nghiệm:

Câu 1: Gía trị của biểu thức x3y - x2y2 -5 tại x = 1; y = -1 là:

A. 0 B. -7 C. 1 D. 6

Câu 2: Kết quả phép nhân hai đơn thức (-\(\dfrac{1}{3}\)x3y)2. (-9x2yz2) là:

A. x7y3z2 B. (-x8y3z2) C. x8y3z2 D. Một kết quả khác

Câu 3: Bậc của đa thức 7x4 - 4x + 6x3 - 7x4 + x2 + 1 là:

A. 0 B. 4 C. 3 D. 7

Câu 4: Nghiệm của đa thức P(x) = 3x + \(\dfrac{1}{5}\) là:

A. x = \(\dfrac{1}{3}\) B. x = -\(\dfrac{1}{5}\) C. x = \(\dfrac{1}{5}\) D. x = -\(\dfrac{1}{15}\)

Câu 5: Kết quả thu gọn -x5y3 + 3x5y3 - 7x5y3 là :

A. -5x5y3 B. 5x5y3 C. 10x5y3 D. -8x5y3

II/ Tự luận

Bài 1; Thu gọn biểu thức, tìm bậc, hệ số và phần biến

\(\dfrac{-2}{3}\)​x3y2z(3x2yz)2

Bài 2:

a) Tìm đa thức A,biết: A + (x2y - 2xy2 + 5xy + 1) = -2x2y + xy2 - xy -1
b) Tính giá trị của đa thức A, biết x = 1, y = 2

Bài 3: Cho f(x) = 9 - x5 + 4x - 2x3 + x2 - 7x4

g(x) = x5 - 9 + 2x2 + 7x4 + 2x3 - 3x

a) Sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến

b) Tính f(x) + g(x); g(x) - f(x)

Bài 4:

a) Tìm nghiệm của đa thức P(x) = -x + 3

b) Tìm hệ số m của đa thức A(x) = mx2 + 5x - 3

Biết rằng đa thức có 1 nghiệm là x = -2?

1
5 tháng 4 2018

I . Trắc Nghiệm

1B . 2D . 3C . 5A

II . Tự luận

2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1

\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)

=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1

=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)

= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2

b, thay x=1,y=2 vào đa thức A

Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2

= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2

= -6 + 12 - 12 - 2

= -8

3,Sắp xếp

f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)

=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x

g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x

=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x

b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)

=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x

=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)

= 3x\(^2\) + x

g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)

=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x

=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)

= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x

7 tháng 5 2018

a)  A(x) = 2x–3x2–3+4x3–x2–2x–5 = \(4x^3-4x^2-4x-8.\)

B(x) = 3x–4x3–1+3x2–5x–3x2\(=-4x^3-2x-1\)

b) M(x) = A(x) + B(x) \(=-4x^2-6x-9\)

c) Để M(x) = –9 => M(x) = \(=-4x^2-6x-9\)= -9

\(=-4x^2-6x=0\)

\(\Leftrightarrow-2x\left(2x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}-2x=0\\2x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\2x=3\Leftrightarrow x=\frac{3}{2}\end{cases}}}\)

d) Ta có: đa thức K(x) = 5x–1

\(\Leftrightarrow K\left(x\right)=5x-1=0\) 

\(\Leftrightarrow5x=1\)

\(\Leftrightarrow x=\frac{1}{5}\)

Vậy....

18 tháng 3 2017

Bài 1:

a) Để tìm nghiệm của đa thức \(\left(x-3\right)\left(4-5x\right)\), ta cho đa thức \(\left(x-3\right)\left(4-5x\right)=0\).

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\4-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\5x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{4}{5}\end{matrix}\right.\)

Vậy nghiệm của đa thức \(\left(x-3\right)\left(4-5x\right)\)\(3\)\(\dfrac{4}{5}\).

b) Để tìm nghiệm của đa thức \(x^2-2\), ta cho đa thức \(x^2-2=0\).

\(\Leftrightarrow x^2=2\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{2}\\x=\sqrt{2}\end{matrix}\right.\)

Vậy nghiệm của đa thức \(x^2-2\)\(-\sqrt{2}\)\(\sqrt{2}\).

c) Để tìm nghiệm của đa thức \(x^2+\sqrt{3}\), ta cho đa thức \(x^2+\sqrt{3}=0\).

\(\Leftrightarrow x^2=-\sqrt{3}\)

\(x^2\ge0\) với mọi \(x\)

nên \(x^2>-\sqrt{3}\)

Vậy đa thức \(x^2+\sqrt{3}\) vô nghiệm.

d) Để tìm nghiệm của đa thức \(x^2+2x\), ta cho đa thức \(x^2+2x=0\).

\(\Leftrightarrow x\times\left(x+2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy nghiệm của đa thức \(x^2+2x\)\(0\)\(-2\).

e) Để tìm nghiệm của đa thức \(x^2+2x-3\), ta cho đa thức \(x^2+2x-3=0\).

\(\Leftrightarrow x^2+2x=3\) \(\Leftrightarrow x^2+x+x+1=3+1\) \(\Leftrightarrow x\times\left(x+1\right)+\left(x+1\right)=4\) \(\Leftrightarrow\left(x+1\right)\left(x+1\right)=4\) \(\Leftrightarrow\left(x+1\right)^2=4\) \(\Leftrightarrow\left[{}\begin{matrix}x+1=-2\\x+1=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)

Vậy nghiệm của đa thức \(x^2+2x-3\)\(-3\)\(1\).

Bài 2:

a) Ta có: \(f\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+4\right)\) \(=x-2x^2+2x^2-x+4\) \(=\left(-2x^2+2x^2\right)+\left(x-x\right)+4=4\)

\(f\left(x\right)=4\) với mọi \(x\)

nên \(f\left(x\right)>0\) với mọi \(x\)

Vậy đa thức \(f\left(x\right)\) vô nghiệm.

b) Ta có: \(g\left(x\right)=x\left(x-5\right)-x\left(x+2\right)+7x=x^2-5x-x^2-2x\) \(=\left(x^2-x^2\right)-\left(5x+2x\right)=-7x\)

Để tìm nghiệm của đa thức \(g\left(x\right)\), ta cho đa thức \(g\left(x\right)=0\).

\(\Leftrightarrow-7x=0\Leftrightarrow x=0\)

Vậy nghiệm của đa thức \(g\left(x\right)\)\(0\).

c) Theo đề bài, ta có: \(h\left(x\right)=x\left(x-1\right)+1\) (Đa thức này đã được thu gọn)

Để tìm nghiệm của đa thức \(h\left(x\right)\), ta cho đa thức \(h\left(x\right)=0\).

\(\Leftrightarrow x\left(x-1\right)+1=0\Leftrightarrow x\left(x-1\right)=-1\)

\(\Rightarrow x\inƯ\left(-1\right)=\left\{-1;1\right\}\)

Ta có bảng sau:

\(x\) \(-1\) \(1\)
\(x-1\) \(-2\) \(0\)
\(x\left(x-1\right)\) \(2\) (loại) \(0\) (loại)

Vậy đa thức \(h\left(x\right)\) vô nghiệm.

18 tháng 3 2017

nếu ai đang rảnh thì giúp mk =))))) tks ạ!