K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2018

Câu 1:

\(2\sqrt{\dfrac{3}{20}}+\sqrt{\dfrac{1}{60}}-\sqrt{\dfrac{1}{15}}\)

= \(\sqrt{\dfrac{2^2\cdot3}{20}}+\sqrt{\dfrac{1}{60}}-\sqrt{\dfrac{1}{15}}\)

= \(\sqrt{\dfrac{12}{20}}+\sqrt{\dfrac{1}{60}}-\sqrt{\dfrac{1}{15}}\)

= \(\dfrac{\sqrt{12}\cdot\sqrt{20}}{\left(\sqrt{20}\right)^2}+\dfrac{\sqrt{60}}{\left(\sqrt{60}\right)^2}-\dfrac{\sqrt{15}}{\left(\sqrt{15}\right)^2}\)

= \(\dfrac{\sqrt{240}}{20}+\dfrac{\sqrt{60}}{60}-\dfrac{\sqrt{15}}{15}\)

= \(\dfrac{\sqrt{15}}{5}+\dfrac{\sqrt{15}}{30}-\dfrac{\sqrt{15}}{15}\)

= \(\sqrt{15}\cdot\left(\dfrac{1}{5}+\dfrac{1}{30}-\dfrac{1}{15}\right)\)

= \(\sqrt{15}\cdot\dfrac{1}{6}\) = \(\dfrac{\sqrt{15}}{6}\)

Bài 2:

a)\(\dfrac{1}{\sqrt{18}+\sqrt{8}-2\sqrt{2}}=\dfrac{1}{\sqrt{18}+2\sqrt{2}-2\sqrt{2}}=\dfrac{1}{\sqrt{18}}=\dfrac{\sqrt{18}}{18}=\dfrac{\sqrt{2}}{6}\)

b)\(\dfrac{\sqrt{2}}{1+\sqrt{2}-\sqrt{3}}=\dfrac{\sqrt{2}\cdot\left(1+\sqrt{2}+\sqrt{3}\right)}{\left(1+\sqrt{2}\right)^2-3}=\dfrac{\sqrt{2}\cdot\left(1+\sqrt{2}+\sqrt{3}\right)}{1+2\sqrt{2}+2-3}=\dfrac{\sqrt{2}\cdot\left(1+\sqrt{2}+\sqrt{3}\right)}{2\sqrt{2}}=\dfrac{1}{2}\cdot\left(1+\sqrt{2}+\sqrt{3}\right)\)c) \(\dfrac{1}{\sqrt{3}+\sqrt{2}-\sqrt{5}}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}\right)^2-5}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{3+2\sqrt{6}+2-5}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{2\sqrt{6}}=\dfrac{\sqrt{6}\cdot\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)}{2\left(\sqrt{6}\right)^2}=\dfrac{\sqrt{6}}{12}\cdot\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)\)

26 tháng 8 2017

bài 1) a) \(xy\sqrt{\dfrac{x}{y}}=x\sqrt{y}\sqrt{y}\dfrac{\sqrt{x}}{\sqrt{y}}=x\sqrt{x}\sqrt{y}=\left(\sqrt{x}\right)^3\sqrt{y}\)

b) \(\sqrt{\dfrac{5a^3}{49b}}=\dfrac{\sqrt{5a^3}}{\sqrt{49b}}=\dfrac{\sqrt{5a^3}}{7\sqrt{b}}=\dfrac{\sqrt{5a^3}.\sqrt{b}}{7\sqrt{b}.\sqrt{b}}=\dfrac{\sqrt{5a^3b}}{7b}\)

bài 2) a) \(\dfrac{\sqrt{3}-3}{1-\sqrt{3}}=\dfrac{\sqrt{3}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}=\sqrt{3}\)

b) \(\dfrac{5-\sqrt{15}}{\sqrt{3}-\sqrt{5}}=\dfrac{-\sqrt{5}\left(\sqrt{3}-\sqrt{5}\right)}{\sqrt{3}-\sqrt{5}}=-\sqrt{5}\)

c) \(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}=\dfrac{\sqrt{2}\left(2+\sqrt{2}\right)}{5\sqrt{2}}=\dfrac{2+\sqrt{2}}{5}\)

25 tháng 6 2018

a) \(\dfrac{\sqrt{2}}{1+\sqrt{2}-\sqrt{3}}=\dfrac{\sqrt{2}\left(1+\sqrt{2}+\sqrt{3}\right)}{\left(1+\sqrt{2}-\sqrt{3}\right)\left(1+\sqrt{2}+\sqrt{3}\right)}\dfrac{\sqrt{2}+2+\sqrt{6}}{\left(1+\sqrt{2}\right)^2-3}=\dfrac{\sqrt{2}+2+\sqrt{6}}{2\sqrt{2}+3-3}=\dfrac{\sqrt{2}+2+\sqrt{6}}{2\sqrt{2}}=\dfrac{1+\sqrt{2}+\sqrt{3}}{2}\)

b) \(\dfrac{1}{\sqrt{3}+\sqrt{2}-\sqrt{5}}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}\right)^2-5}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{2\sqrt{6}+5-5}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{2\sqrt{6}}=\dfrac{3\sqrt{2}+2\sqrt{3}+\sqrt{30}}{2\sqrt{6}\cdot\sqrt{6}}=\dfrac{3\sqrt{2}+2\sqrt{3}+\sqrt{30}}{12}\)

Bài 50:

\(\dfrac{5}{\sqrt{10}}=\dfrac{5\sqrt{10}}{10}=\dfrac{\sqrt{10}}{2}\)

\(\dfrac{5}{2\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)

\(\dfrac{1}{3\sqrt{20}}=\dfrac{1}{6\sqrt{5}}=\dfrac{\sqrt{5}}{30}\)

\(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}=\dfrac{\sqrt{2}\left(2+\sqrt{2}\right)}{5\sqrt{2}}=\dfrac{2+\sqrt{2}}{5}\)

11 tháng 7 2018

b) bạn trục mẫu đi nha dựa vào hằng đẳng thức a^2 -b^2=(a-b)(a+b)

rồi bạn tính nói chung mẫu bằng -1

tính cái trên tử kết quả là 4

c) bạn dựa vào câu b .\(\dfrac{1}{\sqrt{3}}=\dfrac{2}{2\sqrt{3}}>\dfrac{2}{\sqrt{3}+\sqrt{4}}\)

từ đó suy ra B > 2A vậy B>8

Bài 3:

a: \(=\dfrac{3+2\sqrt{2}}{1}-\dfrac{\sqrt{2}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}\)

\(=3+2\sqrt{2}-\sqrt{2}=3+\sqrt{2}\)

b: \(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\cdot\sqrt{\dfrac{ab+b^2-2b\sqrt{ab}}{a^2+2a\sqrt{b}+b}}\)

\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\left(\sqrt{ab}-b\right)}{\left(a+\sqrt{b}\right)^2}\)

\(=\dfrac{\sqrt{b}}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a+\sqrt{b}}=\dfrac{b}{a+\sqrt{b}}\)

c: \(=x+\sqrt{x}-2\sqrt{x}-1+1=x-\sqrt{x}\)

bài 2: 

a: \(\dfrac{25}{5-2\sqrt{3}}=\dfrac{125+10\sqrt{3}}{13}\)

b: \(\dfrac{8}{\sqrt{5}+2}=8\sqrt{5}-32\)

c: \(\dfrac{6}{2\sqrt{3}-\sqrt{7}}=\dfrac{12\sqrt{3}+6\sqrt{7}}{5}\)

d: \(=\dfrac{\sqrt{3}\left(3\sqrt{3}-2\right)}{\sqrt{2}\left(3\sqrt{3}-2\right)}=\dfrac{\sqrt{6}}{2}\)

 

bài 1 :Trục căn thức ở mẫu và rút ngọn nếu được. a) \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\) b) \(\dfrac{26}{5-2\sqrt{3}}\) c) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\) d) \(\dfrac{2\sqrt{10}-5}{4-\sqrt{10}}\) g) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1+1}}\) bài 2: tính giá trị các biểu thức sau: a)\(\dfrac{2}{\sqrt{7}-5}-\dfrac{2}{\sqrt{7}+5}\) b)...
Đọc tiếp

bài 1 :Trục căn thức ở mẫu và rút ngọn nếu được.

a) \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\) b) \(\dfrac{26}{5-2\sqrt{3}}\) c) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\)

d) \(\dfrac{2\sqrt{10}-5}{4-\sqrt{10}}\) g) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1+1}}\)

bài 2: tính giá trị các biểu thức sau:

a)\(\dfrac{2}{\sqrt{7}-5}-\dfrac{2}{\sqrt{7}+5}\) b) \(\dfrac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\dfrac{\sqrt{7}-\sqrt{5}}{\sqrt{7}-\sqrt{5}}\)

c) \(\sqrt{12}+\sqrt{48}-\sqrt{(\sqrt{75}-\sqrt{108)}^2}\)

bài 3: thực hiện phép tính.

a) \(\sqrt{(3-2\sqrt{2})^2}+\sqrt{(3+2\sqrt{2})^2}\) b)\(\sqrt{(5-2\sqrt{6})^2}-\sqrt{(5+2\sqrt{6})^2}\)

c) \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\) d) \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)

bài 4: thực hiện các phép tính sau.

a) \(\sqrt{125}-4\sqrt{45}+3\sqrt{20}-\sqrt{80}\) b) \(2\sqrt{\dfrac{27}{4}}-\sqrt{\dfrac{48}{9}}\dfrac{2}{5}\sqrt{\dfrac{75}{16}}\)

c) \(\sqrt{8}+\sqrt{72}+\sqrt{98}-5\sqrt{128}\) d) \(2\sqrt{\dfrac{9}{8}}-\sqrt{\dfrac{49}{2}}+\sqrt{\dfrac{25}{18}}\)

bài 5: rút ngọn biểu thức với giả thiết các biểu thức chữ đều có nghĩa.

a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}(x>0;y>0)\)

b) \(\dfrac{a+\sqrt{ab}}{b+\sqrt{ab}}(a;b\ge0)\)

bài 6: giải các phương trình sau:\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

2
7 tháng 8 2018

mn ơi giải giúp mik bài não cũng đc a

mình cảm ơn mn nhiều ạ =))

7 tháng 8 2018

tớ nghĩ tớ giải đc 1-2 bài gì đó nhưng tớ ko bít bấm can lm sao giải cho cậu đc

10 tháng 4 2017

Nhat Linh bị nhầm câu cuối:

\(\dfrac{y+b\sqrt{y}}{b.\sqrt{y}}=\dfrac{y\sqrt{y}+b.y}{b.y}=\dfrac{\sqrt{y}+b}{b}.\)