K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 2 2020

\(x^2+10x+16\le0\Leftrightarrow-8\le x\le-2\)

Xét BPT dưới với \(x\in\left[-8;-2\right]\):

\(m\left(x-1\right)\ge1\)

\(\Leftrightarrow m\le\frac{1}{x-1}\) (do \(x-1< 0\))

Để BPT vô nghiệm

\(\Leftrightarrow m>\max\limits_{\left[-8;-2\right]}\frac{1}{x-1}=-\frac{1}{9}\)

Vậy \(m>-\frac{1}{9}\) thì BPT vô nghiệm

NV
5 tháng 5 2021

\(x^2+10x+16\le0\Rightarrow-8\le x\le-2\)

Xét BPT: \(mx\ge3m+1\Leftrightarrow m\left(x-3\right)\ge1\) trên \(\left[-8;-2\right]\)

Do \(-8\le x\le-2\Rightarrow x-3< 0\)

Do đó BPT tương đương:

\(m\le\dfrac{1}{x-3}\) (1)

(1) vô nghiệm khi và chỉ khi \(m>\max\limits_{\left[-8;-2\right]}\dfrac{1}{x-3}\)

\(\Rightarrow m>-\dfrac{1}{5}\)

NV
24 tháng 4 2020

\(x^2+10x+16\le0\Rightarrow-8\le x\le-2\)

Xét BPT \(mx\ge3m+1\) trên \(\left[-8;-2\right]\)

\(\Leftrightarrow m\left(x-3\right)\ge1\)

\(\Leftrightarrow m\le\frac{1}{x-3}\)

Để BPT vô nghiệm \(\Leftrightarrow m>\max\limits_{\left[-8;-2\right]}\frac{1}{x-3}=-\frac{1}{5}\)

Vậy \(m>-\frac{1}{5}\) thì BPT đã cho vô nghiệm

12 tháng 3 2021

Bài 1 \(\left\{{}\begin{matrix}x^2-3x-4\le0\\\left(m-1\right)x\ge2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le4\\\left(m-1\right)x\ge2\end{matrix}\right.\)

Nếu m = 1, hệ vô nghiệm

Nếu m ≠ 1, hệ tương đương

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\x\le\dfrac{2}{m-1}\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\x\ge\dfrac{2}{m-1}\end{matrix}\right.\end{matrix}\right.\)

Hệ có nghiệm khi một trong hai hệ trong hệ ngoặc vuông có nghiệm ⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\\dfrac{2}{m-1}\ge-1\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\\dfrac{2}{m-1}\le4\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\-2\le1-m\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\2\le4m-4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-1\le m< 1\\\dfrac{3}{2}\le m\le4\end{matrix}\right.\)

 

3 tháng 5 2017

a) Hệ phương trình vô nghiệm khi và chỉ khi:\(\dfrac{m}{3}=\dfrac{-2}{2}\ne\dfrac{2}{9}\)
Xét \(\dfrac{m}{3}=\dfrac{-2}{2}\Leftrightarrow m=-3\) .
Dễ thấy \(m=-3\) thỏa mãn: \(\dfrac{-3}{3}=\dfrac{-2}{2}\ne\dfrac{2}{9}\)
Vậy \(m=-3\) hệ vô nghiệm.

3 tháng 5 2017

b) Hệ phương trình vô nghiệm khi và chỉ khi:\(\dfrac{2}{1}=\dfrac{-m}{1}\ne\dfrac{5}{7}\)
Xét: \(\dfrac{2}{1}=\dfrac{-m}{1}\Leftrightarrow m=-2\)
Do \(\dfrac{2}{1}=\dfrac{-\left(-2\right)}{1}\ne\dfrac{5}{7}\) thỏa mãn nên m = - 2 hệ phương trình vô nghiệm.

23 tháng 2 2021

\(\left\{{}\begin{matrix}x^2-3x+2\le0\\mx+1-m\le0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}1\le x\le2\\x\le\dfrac{-1+m}{m}\end{matrix}\right.\)

để hpt trên có nghiệm thì \(\dfrac{-1+m}{m}\le2\) ĐK m ≠ 0

\(< =>m\ge-1\)

Vậy .....

 

NV
23 tháng 2 2021

\(x^2-3x+2\le0\Leftrightarrow1\le x\le2\) \(\Rightarrow D_1=\left[1;2\right]\)

Xét \(mx\le m-1\)

- Với \(m=0\) BPT vô nghiệm

- Với \(m>0\Leftrightarrow x\le\dfrac{m-1}{m}\) \(\Rightarrow D_2=(-\infty;\dfrac{m-1}{m}]\)

Hệ có nghiệm khi \(D_1\cap D_2\ne\varnothing\)

\(\Leftrightarrow\dfrac{m-1}{m}\ge1\) \(\Rightarrow\) không tồn tại m thỏa mãn

- Với \(m< 0\Leftrightarrow x\ge\dfrac{m-1}{m}\Rightarrow D_2=[\dfrac{m-1}{m};+\infty)\)

\(D_1\cap D_2\ne\varnothing\Leftrightarrow\dfrac{m-1}{m}\le2\)

\(\Leftrightarrow m-1\ge2m\Rightarrow m\le-1\)

Vậy \(m\le-1\)

NV
18 tháng 2 2020

a/ \(x^2+2x-15< 0\Rightarrow-5< x< 3\)

TH1: \(m=-1\) ko thỏa mãn

TH2: \(m>-1\Rightarrow x\ge\frac{3}{m+1}\)

Để BPT đã cho có nghiệm thì: \(\frac{3}{m+1}< 3\)

\(\Leftrightarrow m+1>1\Rightarrow m>0\)

TH3: \(m< -1\Rightarrow x\le\frac{3}{m+1}\)

Để BPT có nghiệm \(\Rightarrow\frac{3}{m+1}>-5\)

\(\Leftrightarrow3< -5\left(m+1\right)\)

\(\Leftrightarrow5m< -8\Rightarrow m< -\frac{8}{5}\)

Vậy để BPT đã cho có nghiệm thì \(\left[{}\begin{matrix}m>0\\m< -\frac{8}{5}\end{matrix}\right.\)

NV
18 tháng 2 2020

b/ \(x^2-3x-4\le0\Leftrightarrow-1\le x\le4\)

Xét bpt \(\left(m-1\right)x\ge2\)

TH1: \(m=1\) ko thỏa mãn

TH2: \(m>1\Rightarrow x\ge\frac{2}{m-1}\)

Để BPT có nghiệm \(\Rightarrow4\le\frac{2}{m-1}\)

\(\Rightarrow2\left(m-1\right)\le1\Rightarrow m\le\frac{3}{2}\)

Kết hợp điều kiện \(\Rightarrow1< m\le\frac{3}{2}\)

TH3: \(m< 1\Rightarrow x\le\frac{2}{m-1}\)

Để BPT có nghiệm \(\Rightarrow\frac{2}{m-1}\ge-1\)

\(\Leftrightarrow2\le1-m\Rightarrow m\le-1\)

Vậy để BPT đã cho có nghiệm thì: \(\left[{}\begin{matrix}m\le-1\\1< m\le\frac{3}{2}\end{matrix}\right.\)