K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2018

a) \(\left(a-b\right)^2-2\left(a-b\right)c+c^2\)

\(=\left(a-b-c\right)^2\)

b) \(81a^2+18a+1\)

\(=\left(9a\right)^2+2.9a.1+1^2\)

\(=\left(9a+1\right)^2\)

c) \(3\left(x+1\right)^n.y-6\left(x+1\right)^{n+1}\)

\(=3\left(x+1\right)^n.y-6\left(x+1\right)^n.6\left(x+1\right)\)

\(=3\left(x+1\right)^n\left[y-12\left(x+1\right)\right]\)

\(=3\left(x+1\right)^n\left(y-12x-12\right)\)

d) \(\left(a-2b\right)^{3n}+\left(a-2b\right)^{3n+1}\)

\(=\left(a-2b\right)^{3n}+\left(a-2b\right)^{3n}.\left(a-2b\right)\)

\(=\left(a-2b\right)^{3n}\left(1+a-2b\right)\)

27 tháng 6 2018

bạn biết làm bài 2 k ạ

1. Phân tích đa thức thành nhân tử:a. x2 – x – 6b. x4 + 4x2 – 5c. x3 – 19x – 302. Phân tích thành nhân tử:a. A = ab(a – b) + b(b – c) + ca(c – a)b. B = a(b2 – c2) + b(c2 – a2) + c(a2 – b2)c. C = (a + b + c)3 – a3 – b3 – c33. Phân tích thành nhân tử:a. (1 + x2)2 – 4x (1 – x2)b. (x2 – 8)2 + 36c. 81x4 + 4d. x5 + x + 14. a. Chứng minh rằng: n5 – 5n3 + 4n chia hết cho 120 với mọi số nguyên n.b. Chứng minh...
Đọc tiếp

1. Phân tích đa thức thành nhân tử:

a. x2 – x – 6

b. x4 + 4x2 – 5

c. x3 – 19x – 30

2. Phân tích thành nhân tử:

a. A = ab(a – b) + b(b – c) + ca(c – a)

b. B = a(b2 – c2) + b(c2 – a2) + c(a2 – b2)

c. C = (a + b + c)3 – a3 – b3 – c3

3. Phân tích thành nhân tử:

a. (1 + x2)2 – 4x (1 – x2)

b. (x2 – 8)2 + 36

c. 81x4 + 4

d. x5 + x + 1

4. a. Chứng minh rằng: n5 – 5n3 + 4n chia hết cho 120 với mọi số nguyên n.

b. Chứng minh rằng: n3 – 3n2 – n + 3 chia hết cho 48 với mọi số lẻ n.

5. Phân tích các đa thức sau đây thành nhân tử

a. a3 – 7a – 6

b. a3 + 4a2 – 7a – 10

c. a(b + c)2 + b(c + a)2 + c(a + b)2 – 4abc

d. (a2 + a)2 + 4(a2 + a) – 12

e. (x2 + x + 1) (x2 + x + 2) – 12

f. x8 + x + 1

g. x10 + x5 + 1

6. Chứng minh rằng với mọi số tự nhiên lẻ n:

a. n2 + 4n + 8 chia hết cho 8

b. n3 + 3n2 – n – 3 chia hết cho 48

7. Tìm tất cả các số tự nhiên n để :

a. n4 + 4 là số nguyên tố

b. n1994 + n1993 + 1 là số nguyên tố

8. Tìm nghiệm nguyên của phương trình:

a. x + y = xy

b. p(x + y) = xy với p nguyên tố

c. 5xy – 2y2 – 2x2 + 2 = 0

2
5 tháng 7 2018

Bài 2:

a)  \(A=ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

\(=\left(a-b\right)\left(c-a\right)\left(c-b\right)\)

b)  \(B=a\left(b^2-c^2\right)+b^2\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)

\(=\left(b-a\right)\left(c-a\right)\left(c-b\right)\)

c)  \(C=\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

p/s: từ sau bn đăng 1-2 bài thôi nhé, nhiều thế này người lm bài cx hơi bất tiện để đọc đề

      còn mấy câu nữa bn đăng lại nhé

5 tháng 7 2018

Bài 1: 

a)  \(x^2-x-6=\left(x-3\right)\left(x+2\right)\)

b)   \(x^4+4x^2-5=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)

c)  \(x^3-19x-30=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)

1. Phân tích đa thức thành nhân tử:a. x2 – x – 6b. x4 + 4x2 – 5c. x3 – 19x – 302. Phân tích thành nhân tử:a. A = ab(a – b) + b(b – c) + ca(c – a)b. B = a(b2 – c2) + b(c2 – a2) + c(a2 – b2)c. C = (a + b + c)3 – a3 – b3 – c33. Phân tích thành nhân tử:a. (1 + x2)2 – 4x (1 – x2)b. (x2 – 8)2 + 36c. 81x4 + 4d. x5 + x + 14. a. Chứng minh rằng: n5 – 5n3 + 4n chia hết cho 120 với mọi số nguyên n.b. Chứng minh...
Đọc tiếp

1. Phân tích đa thức thành nhân tử:

a. x2 – x – 6

b. x4 + 4x2 – 5

c. x3 – 19x – 30

2. Phân tích thành nhân tử:

a. A = ab(a – b) + b(b – c) + ca(c – a)

b. B = a(b2 – c2) + b(c2 – a2) + c(a2 – b2)

c. C = (a + b + c)3 – a3 – b3 – c3

3. Phân tích thành nhân tử:

a. (1 + x2)2 – 4x (1 – x2)

b. (x2 – 8)2 + 36

c. 81x4 + 4

d. x5 + x + 1

4. a. Chứng minh rằng: n5 – 5n3 + 4n chia hết cho 120 với mọi số nguyên n.

b. Chứng minh rằng: n3 – 3n2 – n + 3 chia hết cho 48 với mọi số lẻ n.

5. Phân tích các đa thức sau đây thành nhân tử

a. a3 – 7a – 6

b. a3 + 4a2 – 7a – 10

c. a(b + c)2 + b(c + a)2 + c(a + b)2 – 4abc

d. (a2 + a)2 + 4(a2 + a) – 12

e. (x2 + x + 1) (x2 + x + 2) – 12

f. x8 + x + 1

g. x10 + x5 + 1

6. Chứng minh rằng với mọi số tự nhiên lẻ n:

a. n2 + 4n + 8 chia hết cho 8

b. n3 + 3n2 – n – 3 chia hết cho 48

7. Tìm tất cả các số tự nhiên n để :

a. n4 + 4 là số nguyên tố

b. n1994 + n1993 + 1 là số nguyên tố

8. Tìm nghiệm nguyên của phương trình:

a. x + y = xy

b. p(x + y) = xy với p nguyên tố

c. 5xy – 2y2 – 2x2 + 2 = 0

1
15 tháng 7 2018

a) Ta có: \(x^2-x-6\)

\(=x^2-x-9+3\)

\(=\left(x^2-9\right)-\left(x-3\right)\)

\(=\left(x-3\right)\left(x+3\right)-\left(x-3\right)\)

\(=\left(x-3\right)\left(x+2\right)\)

b) Sử dụng phương pháp Hệ số bất định

19 tháng 9 2018

a) x2yz - x3y3z + xyz2 = xyz.(x - x2y2 + z)

b) 4x3 + 24x2 - 12xy2 = 4x.(x2 + 6x - 3y2)

c) x2.(m+n) - 3y2.(m+n) = (m+n).(x2 - 3y2)

d) 4x2.(x-y) + 9y2.(y-x) = 4x2.(x-y) - 9y2.(x-y) = (x-y).(4x2 - 9y2)

e) x2.(a-b) + 2.(b-a) = x2.(a-b) - 2.(a-b) = (a-b).(x2 - 2)

f) 10x2.(a-2b)2 - (x2 + 2).(2b-a)2 = (a-2b)2.(10x2 - (x2 +2) ) = (a-2b)2.(9x2 - 2)

g) 50x2.(x-y)2 - 8y2.(y-x)2 = (x-y)2.2.(25x2 - 4y2)

h) 16am+2 - 45amb = 16am.a2  - 45amb = am.(16a2 - 45b)

1. Phân tích đa thức thành nhân tử: a. x2 - x - 6 b. x4 + 4x2 - 5 c. x3 - 19x - 30 2. Phân tích thành nhân tử: a. A = ab(a - b) + b(b - c) + ca(c - a) b. B = a(b2 - c2) + b(c2 - a2) + c(a2 - b2) c. C = (a + b + c)3 - a3 - b3 - c3 3. Phân tích thành nhân tử: a. (1 + x2)2 - 4x (1 - x2) b. (x2 - 8)2 + 36 c. 81x4 + 4 d. x5 + x + 1 4. a. Chứng minh rằng: n5 - 5n3 + 4n chia hết cho 120 với mọi số nguyên n. b. Chứng minh rằng: n3 - 3n2 - n + 3 chia...
Đọc tiếp

1. Phân tích đa thức thành nhân tử:

a. x2 - x - 6

b. x4 + 4x2 - 5

c. x3 - 19x - 30

2. Phân tích thành nhân tử:

a. A = ab(a - b) + b(b - c) + ca(c - a)

b. B = a(b2 - c2) + b(c2 - a2) + c(a2 - b2)

c. C = (a + b + c)3 - a3 - b3 - c3

3. Phân tích thành nhân tử:

a. (1 + x2)2 - 4x (1 - x2)

b. (x2 - 8)2 + 36

c. 81x4 + 4

d. x5 + x + 1

4. a. Chứng minh rằng: n5 - 5n3 + 4n chia hết cho 120 với mọi số nguyên n.

b. Chứng minh rằng: n3 - 3n2 - n + 3 chia hết cho 48 với mọi số lẻ n.

5. Phân tích các đa thức sau đây thành nhân tử

1. a3 - 7a - 6

2. a3 + 4a2 - 7a - 10

3. a(b + c)2 + b(c + a)2 + c(a + b)2 - 4abc

4. (a2 + a)2 + 4(a2 + a) - 12

5. (x2 + x + 1) (x2 + x + 2) - 12

6. x8 + x + 1

7. x10 + x5 + 1

6. Chứng minh rằng với mọi số tự nhiên lẻ n:

1. n2 + 4n + 8 chia hết cho 8

2. n3 + 3n2 - n - 3 chia hết cho 48

7. Tìm tất cả các số tự nhiên n để:

1. n4 + 4 là số nguyên tố

2. n1994 + n1993 + 1 là số nguyên tố

8. Tìm nghiệm nguyên của phương trình:

1. x + y = xy

2. p(x + y) = xy với p nguyên tố

3. 5xy - 2y2 - 2x2 + 2 = 0

0