K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2018

         VE HINH

â) Xét tứ giác KCID ,co:

 gocI = (cungAB+cungCD):2   = (180+60):2 = 120 độ 

  gocK=(cungAB-cungCD):2   =(180-60):2=60 độ 

gócI+gocK=120do+60do=180 do 

Vay :  tứ giác KCID nội tiếp (tổng số đo 2 góc đối diện=180 độ )

       :góc AKB = 60 độ 

3 tháng 5 2018

b)Ta có:AB//CD

=>cungAC=cungBD=(180-60):2=60 do (2 cung nằm giữa 2 dây song song thì = nhau ) 

=>AC=BD(2 dây chan 2 cung = nhau thi = nhau )    (1)

=>tứ giác ACDB là hình thang cân 

***Xét : 3giac AKDva  3giac BKC ,co:

gocD=gocC=90do (vi gocC va gocD là góc nội tiếp chắn nửa đường tròn) 

gocCAD=gocDBC(2goc noi tiep cung chan cungCD)

AD=BC(2 đường chéo của hình thang cân thì = nhau )(cmt)

Do do:3giacAKD =3giacBKC (g-c-g)

=>KD=KC (2 canh tương ứng)     (2)

Ta lại có :KA=KC+AC(C nam giua A va K)  

                                                                      }(3) 

              :KB=KD+BD(D nam giua B va K)

Tu (1) ,(2) va (3) suy ra KA=KB  (4)

Tu (2) va (4) suy ra KA.KC=KB.KD .

26 tháng 11 2023

a: Xét (O) có

ΔBAC nội tiếp

AC là đường kính

Do đó: ΔBAC vuông tại B

Xét (O) có

\(\widehat{BAC}\) là góc nội tiếp chắn cung BC

Do đó: \(\widehat{BAC}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BC}=\dfrac{1}{2}\cdot60^0=30^0\)

Gọi H là giao điểm của BD với AC

BD\(\perp\)AC nên BD\(\perp\)AC tại H

ΔOBD cân tại O

mà OH là đường cao

nên H là trung điểm của BD

Xét ΔCBD có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCBD cân tại C

=>CB=CD

Xét ΔCOD và ΔCOB có

CD=CB

OD=OB

CO chung

Do đó: ΔCOD=ΔCOB

=>\(\widehat{COD}=\widehat{COB}\)

=>\(sđ\stackrel\frown{CB}=sđ\stackrel\frown{CD}=60^0\)

Xét ΔBAC vuông tại B có \(\widehat{BAC}+\widehat{BCA}=90^0\)

=>\(\widehat{BCA}+30^0=90^0\)

=>\(\widehat{BCA}=60^0\)

Xét (O) có

\(\widehat{BCA}\) là góc nội tiếp chắn cung AB

Do đó: \(\widehat{BCA}=\dfrac{1}{2}\cdot sđ\stackrel\frown{AB}\)

=>\(sđ\stackrel\frown{AB}=2\cdot\widehat{BCA}=120^0\)

DF//AC

DB\(\perp\)AC

Do đó: DF\(\perp\)DB

=>ΔDFB vuông tại D

ΔDFB vuông tại D

nên ΔDFB nội tiếp đường tròn đường kính BF

mà ΔDFB nội tiếp (O)

nên O là trung điểm của BF

=>OA//DF

=>\(\widehat{BFD}=\widehat{BOH}=\widehat{BOC}\)(hai góc đồng vị)

=>\(\widehat{BFD}=60^0\)

ΔBDF vuông tại D

=>\(\widehat{BFD}+\widehat{FBD}=90^0\)

=>\(\widehat{FBD}+60^0=90^0\)

=>\(\widehat{FBD}=30^0\)

Xét (O) có

\(\widehat{FBD}\) là góc nội tiếp chắn cung FD

Do đó: \(\widehat{FBD}=\dfrac{1}{2}\cdot sđ\stackrel\frown{FD}\)

=>\(sđ\stackrel\frown{FD}=2\cdot\widehat{FBD}=2\cdot\)30=60 độ

 

9 tháng 6 2020

Có thể giải gúp tôi được không / 

Con mua 17 kg cam , mẹ mua gấp 3 lần số cam của con . Hỏi cả hai mẹ con mua được bao nhiêu kg cam ? 

14 tháng 2 2016

a)  vuông,  nên
     
Kc là tiếp tuyến, KEF là cát tuyến nên
     
Suy ra , nên

Ta có  nên , từ đó EMOF là tứ giác nội tiếp.          (1)
b) Đặt . Ta có ... )uôn nên là ến, KFàcáê u êT c\(DeltaKM\simDetaF.g êtđó O àt gánội ế 1)ặ aó ,nên là tứ iá ộ tip. (2ừ (1) ()y ramđi A , F tộc cng một đường đườgính ủ

a) Trong tứ giác AOBM có = = .

Suy ra cung AMB + =

=> cung AMB= -

= -

=

b) Từ = . Suy ra số đo cung nhỏ AB = và số đo cung lớn AB :

Cung AB = - =