Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đoán đề: \(\dfrac{x^2-1}{\left(x+1\right)\left(x^2-x-6\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x-3\right)\left(x+2\right)}\ge0\)
Xét x-1=0 <=> x=1
x+1=0 <=> x=-1
x-3=0 <=> x=3
x+2=0 <=>x=-2
Bảng xét dấu:
x -2 -1 1 3 -vc +vc x-1 x+2 x-3 x+1 VT 0 0 0 0 0 + + + + - - - - + + + + + - - - - - - + + + - + - - +
Để VT \(\ge0\) <=> x\(\in\left(-2;-1\right)\cup\left(3;+\infty\right)\cup\left\{1\right\}\)
ĐK: ` x \ne 0; x \ne1`
`(x-1)/x>=(3x-1)/(x-1)`
`<=>((x-1)^2-x(3x-1))/(x(x-1))>=0`
`<=> -((2x-1)(x+1))/(x(x-1)) >= 0`
`<=> ((2x-1)(x+1))/(x(x-1)) <= 0`
Bảng xét dấu bạn tự kẻ nkaaaaa.
Vậy `S=[-1;0) \cup [1/2 ;1)`.
Để pt có hai nghiệm <=> \(\Delta\ge0\)\(\Leftrightarrow16m^2-64m+48\ge0\)
\(\Leftrightarrow m\in R\backslash\left(1;3\right)\)
Có \(x_1+x_2-2x_1x_2< 8\)
\(\Leftrightarrow2\left(2m-3\right)-2\left(4m-3\right)< 8\)
\(\Leftrightarrow-4m-8< 0\)
\(\Leftrightarrow m>-2\)
Kết hợp với đk => \(m\in\left(-2;1\right)\cup\left(3;+\infty\right)\cup\left\{1;3\right\}\)
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
1. Để pt có 2 nghiệm trái dấu
\(\Leftrightarrow1.\left(4m^2-m\right)< 0\Leftrightarrow0< m< \frac{1}{4}\)
2. Để BPT đã cho vô nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m+1\right)^2-m\left(m+1\right)^2\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left(m+1\right)^2\left(1-m\right)\le0\end{matrix}\right.\) \(\Rightarrow m=-1\)
3. Để bpt có tập nghiệm là R
\(\Leftrightarrow\left\{{}\begin{matrix}m-7< 0\\\Delta'=4-\left(2-m\right)\left(m-7\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 7\\m^2-9m+18\le0\end{matrix}\right.\) \(\Rightarrow3\le m\le6\)
Ta có 2x – 4 >0
* Xét bất phương trình: mx – 1 <0 (*)
+ Nếu m = 0 thì ( *) luôn đúng với mọi x.
Khi đó, tập nghiệm của hệ bất phương trình là ( 2 ; + ∞ ) .
+ Nếu m > 0 thì từ (*) ⇔ m x < 1 ⇔ x < 1 m
Trong trường hợp này thì tập nghiệm của hệ bất phương trình không thể là ( 2 ; + ∞ ) .
+ Nếu m < 0 thì từ (*) ⇔ m x < 1 ⇔ x < 1 m
Do đó, để hệ bất phương trình đã cho có tập nghiệm là ( 2 ; + ∞ ) khi và chỉ khi 1 m < 2 ( luôn đúng vì m < 0).
Vậy tập hợp các giá trị m thỏa mãn là m ≤ 0 .
TH1: `m=0 `
`2x>0 <=> x>0`
`=>` Không thỏa mãn.
TH2: `m>0`
Bất PT có tập nghiệm là `RR <=> \Delta'<0`
`<=> (m-1)^2-m.4m<0`
`<=> m<-1 ; 1/3 <m`
Vậy `m in (0;+∞)` thỏa mãn.
TH1 là m=0 thì TH2 là \(m\ne0\)
Bpt có tập nghiệm là R <=> \(\left\{{}\begin{matrix}a>0\\\Delta'< 0\end{matrix}\right.\)
Đáp án: m\(\in\left(\dfrac{1}{3};+\infty\right)\)