K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

\(=\frac{3x^2+9x-3}{x^2+x-2}-\frac{x+1}{x+2}-\frac{x-2}{x-1}\)

\(=\frac{3x^2+9x-3}{\left(x+2\right)\left(x-1\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}-\frac{\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)

\(=\frac{3x^2+9x-3-\left(x^2-1\right)-\left(x^2-4\right)}{\left(x-1\right)\left(x+2\right)}\)

\(=\frac{3x^2+9x-3-x^2+1-x^2+4}{\left(x-1\right)\left(x+2\right)}\)

\(=\frac{x^2+9x+2}{\left(x-1\right)\left(x+2\right)}\)

17 tháng 7 2017

hi bn 

bn ghi sai đề

5 tháng 3 2020

\(ĐKXĐ:x\ne\pm3\)

\(P=\left(\frac{x^2-3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)

\(\Leftrightarrow P=\left(\frac{x^2-3x}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)

\(\Leftrightarrow P=\frac{\left(x^2-3x\right)+3\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)

\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x^2+9\right)}:\frac{\left(x-3\right)^2}{\left(x-3\right)\left(x^2+9\right)}\)

\(\Leftrightarrow P=\frac{1}{x+3}:\frac{x-3}{x^2+9}\)

\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x-3\right)}\)

12 tháng 9 2016

a) \(\frac{x^2+5x+6}{x^2+7x+12}\)=\(\frac{x^2+2x+3x+6}{x^2+3x+4x+12}\)=\(\frac{x\left(x+2\right)+3\left(x+2\right)}{x\left(x+3\right)+4\left(x+3\right)}\)=\(\frac{\left(x+3\right)\left(x+2\right)}{\left(x+4\right)\left(x+3\right)}\)

b) \(\frac{7x^2+14x+7}{3x^2+3x}\)=\(\frac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\)=\(\frac{7\left(x+1\right)^2}{3x\left(x+1\right)}\)=\(\frac{7\left(x+1\right)\left(x+1\right)}{3x\left(x+1\right)}\)=\(\frac{7\left(x+1\right)}{3x}\)

13 tháng 12 2016

ban nen tu tinh se tot hon

 

14 tháng 12 2016

mk tính mãi k ra mới hỏi chứ khocroi sắp thi hkì r chỉ jùm vs ik

29 tháng 12 2019

\(\frac{1}{\left(x+1\right)^2\left(x+2\right)}=\frac{a}{x+1}+\frac{b}{\left(x+1\right)^2}+\frac{c}{x+2}\)

\(=\frac{a}{x+1}+\frac{b}{x+1^2}+\frac{c}{x+2}\)

\(=\frac{1}{\left(x+1\right)^2\left(x+2\right)=}=\frac{a}{\left(x+1\right)\left(x+2\right)}+\frac{b}{x+2}+\frac{c}{\left(x+1\right)^2\left(x+2\right)}\)

\(\frac{c}{\left(x+1\right)^2}+\frac{a}{\left(x+1\right)\left(x+2\right)}+\frac{b}{\left(x+2\right)}=1\)

\(=\frac{c}{x^2+2c+x+1}+\frac{a}{x^2+3a\left(x+2a\right)}+\frac{b}{x+2b}=1\)

\(=\frac{\left(c+a\right)}{x^2+\left(2+x+1+\frac{a}{x^2+3ax+2a}+\frac{b}{x+2b}\right)=1}\)

\(=\frac{c+a}{x^2+\left(2c+3a+b\right)}x+2a+2b=0\)

\(\frac{c+a=0}{2c+3b=0}2a+2b=0\)

\(c=b=-a\)

Vậy:.....

A)\(ĐKXĐ:x\ne1;2;3;4;5\)

B)Ta có:\(P=\frac{1}{x^2-x}+\frac{1}{x^2-3x+2}+\frac{1}{x^2-5x+6}+\frac{1}{x^2-7x+12}+\frac{1}{x^2-9x+20}\)

\(=\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x^2-x\right)-\left(2x-2\right)}+\frac{1}{\left(x^2-2x\right)-\left(3x-6\right)}+\frac{1}{\left(x^2-3x\right)-\left(4x-12\right)}+\frac{1}{\left(x^2-4x\right)-\left(5x-20\right)}\)

\(=\frac{1}{x\left(x-1\right)}+\frac{1}{x\left(x-1\right)-2\left(x-1\right)}+\frac{1}{x\left(x-2\right)-3\left(x-2\right)}+\frac{1}{x\left(x-3\right)-4\left(x-3\right)}+\frac{1}{x\left(x-4\right)-5\left(x-4\right)}\)

\(=\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}\)

\(=\frac{1}{x}-\frac{1}{x-1}+\frac{1}{x-1}-\frac{1}{x-2}+\frac{1}{x-2}-\frac{1}{x-3}+\frac{1}{x-3}-\frac{1}{x-4}+\frac{1}{x-4}-\frac{1}{x-5}=\frac{1}{x}-\frac{1}{x-5}=\frac{-5}{x\left(x-5\right)}\)

nhầm

\(\frac{1}{\left(x-1\right)x}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-3\right)\left(x-2\right)}+\frac{1}{\left(x-4\right)\left(x-3\right)}+\frac{1}{\left(x-5\right)\left(x-4\right)}\)

\(=\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+\frac{1}{x-3}-\frac{1}{x-2}+\frac{1}{x-4}-\frac{1}{x-3}+\frac{1}{x-5}-\frac{1}{x-4}=\frac{1}{x-5}-\frac{1}{x}=\frac{5}{\left(x-5\right)x}\)

Xin lỗi nha

24 tháng 3 2020

\(\frac{1}{x^2+3}+\frac{1}{x^2+9x+18}+\frac{1}{x^2+15x+54}=\frac{1}{2}\left(27-\frac{1}{x+9}\right)\)

\(\Leftrightarrow\frac{3}{x\left(x+3\right)}+\frac{3}{\left(x+3\right)\left(x+6\right)}+\frac{3}{\left(x+6\right)\left(x+9\right)}=27-\frac{1}{x+9}\)

Mà 

\(\frac{3}{x\left(x+3\right)}+\frac{3}{\left(x+3\right)\left(x+6\right)}+\frac{3}{\left(x+6\right)\left(x+9\right)}\)

\(=\frac{1}{x}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+9}\)

\(=\frac{1}{x}-\frac{1}{x+9}\)

\(\Rightarrow\frac{1}{x}=27\Rightarrow x=\frac{1}{27}\)

15 tháng 1 2018

ĐKXĐ : X khác 1

pt <=> X^2+X+1/(X-1).(X^2+X+1) - 3X^2/(X-1).(X^2+X+1) = 2X.(X-1)/(X-1).(X^2+X+1)

<=> X^2+X+1/(X-1).(X^2+X+1) - 3X^2/(X-1).(X^2+X+1) - 2X^2-2X/(X-1).(X^2+X+1) = 0

<=> X^2+X+1-3X^2-2X^2+2X/(X-1).(X^2+X+1) = 0

<=> X^2+X+1-3X^2-2X^2+2X=0

<=> -4X^2+3X+1=0

<=> 4X^2-3X-1=0

<=> (X-1).(4X+1) = 0

<=> 4X+1=0 ( vì X khác 1 nên X-1 khác 0 )

<=> X = -1/4 (tm)

Vậy pt có tập nghiệm S = {-1/4}

Tk mk nha