Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu được dùng giai thừa thì...
\(\left(\left(\left(\left(2!\right)!\right)!\right)...\right)!\) = :))
Đây là cách của em.
Ta chứng minh bất đẳng thức sau:
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}+\dfrac{27}{16}\cdot\dfrac{\left(a-b\right)^2}{a+b+c}\)
\(\bullet\) Nếu \(c\ne \text{mid}\{a,b,c\}\) thì \(\left(a-c\right)\left(b-c\right)\ge0\Rightarrow\left(a-b\right)^2\le a^2+b^2+c^2-ab-bc-ca\) từ đây đưa về đối xứng và chứng minh dễ dàng.
\(\bullet\) Nếu \(c= \text{mid}\{a,b,c\}.\) Chuẩn hóa \(a+b=1\Rightarrow0\le c\le1.\) Đặt \(x=ab\Rightarrow0< x\le c\left(1-c\right)\)
Cần chứng minh
\(f(x)=108\,{x}^{2}+ \left( 16\,{c}^{3}+84\,{c}^{2}+12\,c-83 \right) x+ \left( c+1 \right) \left( 16\,{c}^{4}+8\,{c}^{3}-16\,{c}^{2}-19\,c+ 16 \right) \ge 0\)
\(f'(x)=16\,{c}^{3}+84\,{c}^{2}+12\,c+216\,x-83 \)
*Nếu $0 \le c \le \dfrac{1}{2}$ thì \(f'\left(x\right)\le\left(2c-1\right)\left(8c^2-62c+83\right)\le0\)
Khi đó $f(x)$ là hàm nghịch biến nên \(f\left(x\right)\ge f\left(c\left(1-c\right)\right)=2\left(8c^2-11c+8\right)\left(2c-1\right)^2\ge0\)
*Nếu $\dfrac{1}{2} \le c \le 1$ thì \(\Delta_x= \left( 64\,{c}^{4}-992\,{c}^{3}-1740\,{c}^{2}-788\,c-23 \right) \left( 2\,c-1 \right) ^{2}\le 0\)
ta có điều phải chứng minh
:D
Lâu rồi mới đăng bài vì mấy bài kia khó quá :vv
C39:
Đặt \(\left\{{}\begin{matrix}x+y+z=a>0\\y+z+4x=b>0\\z+x+16y=c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{b-a}{3}\\y=\dfrac{c-a}{15}\\z=\dfrac{21a-5b-c}{15}\end{matrix}\right.\).
Khi đó áp dụng bđt AM - GM ta có:
\(P=\dfrac{5b+c-6a}{15a}+\dfrac{4a-b}{3b}+\dfrac{16a-c}{15c}=\left(\dfrac{b}{3a}+\dfrac{4a}{3b}\right)+\left(\dfrac{c}{15a}+\dfrac{16a}{15c}\right)-\left(\dfrac{2}{5}+\dfrac{1}{3}+\dfrac{1}{15}\right)\ge\dfrac{4}{3}+\dfrac{8}{15}-\dfrac{4}{5}=\dfrac{16}{15}\).
Đẳng thức xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}b=2a\\c=4a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+z+4x=2\left(x+y+z\right)\\z+x+16y=4\left(x+y+z\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=y+z\\4y=x+z\end{matrix}\right.\Leftrightarrow21x=35z=15z\).
C47: Dễ thấy x > 1.
Áp dụng bất đẳng thức AM - GM ta có \(P=\dfrac{x^2+\dfrac{1}{x^2}}{x-\dfrac{1}{x}}=\dfrac{x^4+1}{x^3-x}=\dfrac{\left(x^2-1\right)^2}{x^3-x}+\dfrac{2x^2}{x^3-x}=\dfrac{x^2-1}{x}+\dfrac{2x}{x^2-1}\ge2\sqrt{2}\).
Đẳng thức xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\dfrac{x^2-1}{x}=\dfrac{2x}{x^2-1}\\xy=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{2+\sqrt{3}}\\y=\dfrac{1}{\sqrt{2+\sqrt{3}}}\end{matrix}\right.\).
Vậy Min P = \(2\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{2+\sqrt{3}}\\y=\dfrac{1}{\sqrt{2+\sqrt{3}}}\end{matrix}\right.\)
C48: Đề bài là tìm GTLN chứ nhỉ?
Đặt x = a; 2y = b; 3z = c (a, b, c > 0). Khi đó a + b + c = 2.
Ta có \(S=\sqrt{\dfrac{ab}{ab+2c}}+\sqrt{\dfrac{bc}{bc+2a}}+\sqrt{\dfrac{ca}{ca+2b}}\)
\(=\sqrt{\dfrac{ab}{\left(c+a\right)\left(c+b\right)}}+\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{ca}{\left(b+c\right)\left(b+a\right)}}\)
\(\le_{AM-GM}\dfrac{1}{2}\left(\dfrac{a}{c+a}+\dfrac{b}{c+b}+\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{c}{b+c}+\dfrac{a}{b+a}\right)=\dfrac{1}{2}.3=\dfrac{3}{2}\).
Đẳng thức xảy ra khi và chỉ khi a = b = c = \(\dfrac{2}{3}\Leftrightarrow x=\dfrac{2}{3};y=\dfrac{1}{3};z=\dfrac{2}{9}\).
Vậy Max S = \(\dfrac{3}{2}\Leftrightarrow x=\dfrac{2}{3};y=\dfrac{1}{3};z=\dfrac{2}{9}\).
Gõ lại lần cuối, không được nữa nghỉ chơi hoc24:v
Bất đẳng thức cần chứng minh tương đương với $$a^3b^2+b^3c^2+c^3a^2\geq abc(a^2+b^2+c^2)$$Ta có$2\left( {{a^3}{b^2} + {b^3}{c^2} + {c^3}{a^2}} \right) - 2abc\left( {{a^2} + {b^2} + {c^2}} \right)$$= \displaystyle\LARGE{\sum} {{a^3}} \left( {{b^2} - 2bc + {c^2}} \right) -\displaystyle \LARGE{\sum} {{a^2}} ({b^3} - {c^3})$Mặt khác ta có đẳng thức sau
$${a^2}\left( {{b^3} - {c^3}} \right) + {b^2}\left( {{c^3} - {a^3}} \right) + {c^2}\left( {{a^3} - {b^3}} \right) = {a^2}{\left( {b - c} \right)^2} + {b^2}{\left( {c - a} \right)^2} + {c^2}{\left( {a - b} \right)^2}$$Từ đó dễ dàng thu được$$2\left( {{a^3}{b^2} + {b^3}{c^2} + {c^3}{a^2}} \right) - 2abc\left( {{a^2} + {b^2} + {c^2}} \right)$$$$= {a^2}{\left( {b - c} \right)^2}\left( {a - b + c} \right) + {b^2}{\left( {c - a} \right)^2}\left( {b - c + a} \right) + {c^2}{(a - b)^2}\left( {c - a + b} \right)$$$$= {S_a}{\left( {b - c} \right)^2} + {S_b}{\left( {c - a} \right)^2} + {S_c}{\left( {a - b} \right)^2}$$Với $${S_a} = {a^2}\left( {a - b + c} \right)$$$${S_b} = {b^2}\left( {b - c + a} \right)$$$${S_c} = {c^2}\left( {c - a + b} \right)$$Do $a,$$b,$$c$ là độ dài ba cạnh tam giác nên rõ ràng $S_a,S_b,S_c$ không âm. Ta thu được điều hiển nhiên.
Xét hiệu hai vế bất đẳng thức đã cho ta được:
\(VT-VP={\dfrac { \left( a-b \right) ^{2}{c}^{2}}{ \left( b+c \right) \left( c +a \right) \left( a+b+c \right) }}+{\dfrac { \left( b-c \right) ^{2}{a }^{2}}{ \left( a+b \right) \left( c+a \right) \left( a+b+c \right) } }+{\dfrac { \left( ac-{b}^{2} \right) ^{2}}{ \left( a+b \right) \left( b+c \right) \left( a+b+c \right) }}\geqslant 0. \)
Đẳng thức xảy ra khi $a=b=c.$
Cách khác.
Quy đồng, ta cần chứng minh:
\(2\,{a}^{3}{c}^{2}+{a}^{2}{b}^{3}-3\,{a}^{2}{b}^{2}c-2\,{a}^{2}b{c}^{2} +2\,{a}^{2}{c}^{3}+a{b}^{4}-3\,a{b}^{2}{c}^{2}+{b}^{4}c+{b}^{3}{c}^{2}\geq 0\)
Sử dụng bất đẳng thức AM-GM, ta có:
\(3\,a{b}^{2}{c}^{2}\leq \dfrac{5}{4}{a}^{2}{c}^{3}+\dfrac{1}{2}\,a{b}^{4}+\dfrac{1}{4} \,{b}^{4}c+{b}^{3}{c}^{2},\\2\,{a}^{2}b{c}^{2}\leq {\dfrac {7\,{a}^{3}{c} ^{2}}{10}}+\dfrac{1}{5}{a}^{2}{b}^{3}+\dfrac{3}{4}{a}^{2}{c}^{3}+{\dfrac {7\,{b}^{4}c }{20}},\\3\,{a}^{2}{b}^{2}c\leq {\dfrac {13\,{a}^{3}{c}^{2}}{10}}+\dfrac{4}{5}{a }^{2}{b}^{3}+\dfrac{1}{2}a{b}^{4}+\dfrac{2}{5}{b}^{4}c \)
Xong :D
[Toán.C35 _ 24.1.2021]
Điền hai số còn thiếu vào quy luật sau: 0 - 1 - 13 - 61 - ? - ?
\(\Rightarrow0-1-13-61-253-1017\)
[Toán.C36 _ 24.1.2021]
Điền số còn thiếu vào quy luật sau: 32 - 12 - 136 - 176 - ? - 196
\(\Rightarrow\text{32-12-136-176-186-196}\)
Xí câu dễ trước
Câu 31.
a) Thay $b=\dfrac{5-3a}{4}$ vào và rút gọn thì cần chứng minh $(5a-3)^2\geqslant 0.$
b) Ta có: \(5^2=\left(2+3\right)\left(2a^2+3b^2\right)\ge\left(2a+3b\right)^2\Rightarrow2a+3b\le5\)
Đẳng thức xảy ra khi \(a=b=1.\)
Bài 33.
Chuyển về pqr, cần chứng minh:
\({\dfrac { \left( {p}^{2}-3\,q \right) \left( {p}^{3}q-{p}^{2}r-2\,p{q} ^{2}+6\,qr \right) }{2qr \left( {p}^{2}-2\,q \right) }}\geqslant 0 \)
Đây là điều hiển nhiên nếu khai triển biểu thức \({p}^{3}q-{p}^{2}r-2\,p{q}^{2}+6\,qr\) ta sẽ được một đa thức với tất cả hệ số đều dương.
em like rùi sj