Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(=3^0-3^1+3^2-3^3+...+3^{98}-3^{99}\)có 100 hạng tử
\(=\left(3^0-3^1+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{100}\right)\) có 25 cặp
\(=-20+3^4.\left(-20\right)+...+3^{96}.\left(-20\right)\)
\(=-20\left(1+3^4+...+3^{96}\right)⋮-20\)
Cho S = 1-3 + 32 -33 +…….+ 398 – 399
Tính S
Bạn nào giải đầy đủ, nhanh thi mình sẽ tick cho 3 cái luôn
S = 1-3 + 32 -33 +…….+ 398 – 399
=>3S=3-32+33-34+...+399-3100
=>3S+S=(1-3+32-33+...+398-399)+(3-32+33-34+....+399-3100)
=>4S=1-3100
=>S=1-3100/4
A = 2 + 22 + ...... + 260
= 2(1+2) +.......+ 260 (1 +2)
= 3( 2 + ....+ 260) nên A chia hết cho 3
A = _________________(Đề)
= 2( 1 +2 + 22) +...+ 258(1 +2 + 22)
= 7(2 + ...258) nên A chia hết cho 7
Bạn làm tương tự các câu khác nha
S=1-3+32-33+...+399-3100.
3S=3-32+33-34+...+3100-3101.
S+3S=(1-3+32-33+...+399-3100)+(3-32+33-34+...+3100-3101).
4S=1-3101.
S=(1-3101):4.