Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(=-5678-4213+5679-4211=1-8424=-8423\)
b: \(=6234-1593+1594-6334=1-100=-99\)
Tập hợp A có: (2006-1000)+1=1007 phần tử
Tập hợp B có: (100-2):2+1=52 phần tử
Bài 1:
a) Ta có: (a-b)+(c-d)-(a+c)
=a-b+c-d-a-c
=-b-d(1)
Ta lại có: -(b+d)=-b-d(2)
Từ (1) và (2) suy ra (a-b)+(c-d)-(a+c)=-(b+d)
b) Ta có: (a-b)-(c-d)+(b+c)
=a-b-c+d+b+c
=a+d(đpcm)
c) Ta có: a(b-c)-b(a-c)
=ab-ac-ab+cb
=cb-ca
=c(b-a)(đpcm)
d) Ta có: b(c-a)+a(b-c)
=bc-ba+ab-ac
=bc-ac
=c(b-a)(đpcm)
e) Ta có: -c(-a+b)+b(c-a)
=ca-cb+bc-ba
=ca-ba
=a(c-b)(đpcm)
g) Ta có: a(c-b)-b(-a-c)
=ac-ab+ba+bc
=ac+bc
=c(a+b)(đpcm)
a,A=|x-7|+12
Vì \(\left|x-7\right|\ge0\forall x\)nên \(\left|x-7\right|+12\ge12\forall x\)
Ta thấy A=12 khi |x-7| = 0 => x-7 = 0 => x = 7
Vậy GTNN của A là 12 khi x = 7
b,B=|x+12|+|y-1|+4
Vì \(\left|x+12\right|\ge0\forall x\)
\(\left|y-1\right|\ge0\forall y\)
nên \(\left|x+12\right|+\left|y-1\right|\ge0\forall x,y\)
\(\Rightarrow\left|x+12\right|+\left|y-1\right|+4\ge4\forall x,y\)
Ta thấy B = 4 khi \(\hept{\begin{cases}\left|x+12\right|=0\\\left|y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x+12=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-12\\y=1\end{cases}}\)
Vậy GTNN của B là 4 khi x = -12 và y = 1
Câu 1:
\(A=a-b-c+d-a-d+b+c=0\)
\(B=a-\left\{-a-\left[a-b+c\right]-b-c-b\right\}\)
\(=a-\left\{-a-a+b-c-2b-c\right\}\)
\(=a-\left\{-2a-b-2c\right\}\)
=a+b+2c
Bài 4: Đơn giản các biểu thức sau khi bỏ dấu ngoặc
a/ (a + b - c) - (b - c + d)
= a + b - c - b +c - d
= a + (b - b) + (-c + c) - d
= a - d
b/ -(a-b+c)+(a-b+d)
= -a + b - c + a - b + d
= (-a + a) + (b - b) - c + d
= -c + d
c/ (a+b)-(-a+b-c)
= a + b + a - b + c
= 2a + c
d/ -(a+b) + (a+b+c)
= -a - b + a + b + c
= c
\(1a,A=\left|5-x\right|+\left|y-2\right|-3\)
Vì \(\left|5-x\right|\ge vs\forall x,\left|y-2\right|\ge vs\forall y\Rightarrow A\ge3\)
Dấu \("="\) xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|5-x\right|=0\\\left|y-2\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}5-x=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=2\end{cases}}\)
Vậy \(A_{min}=3\Leftrightarrow x=5,y=2\)
\(b,B=\left|4-2x\right|+y^2+\left(2-1\right)^2-6\)
\(=\left|4-2x\right|+y^2-5\)
Vì \(\left|4-2x\right|\ge vs\forall x;y^2\ge0vs\forall y\Rightarrow B\ge-5\)
Dấu \("="\) xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4-2x\right|=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4-2x=0\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)
Vậy \(B_{min}=-5\Leftrightarrow x=2,y=0\)
\(c,C=\frac{1}{2}-\left|x-2\right|\) ( bn xem lại đề nhé )