Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
S = 1/5 + 1/13 + 1/14 + 1/15 + 1/61 + 1/62 + 1/63
Ta thấy:
1/13 < 1/12 ; 1/14 < 1/12 ; 1/15 < 1/12
=> 1/13 + 1/14 + 1/15 < 1/12 + 1/12 + 1/12 = 1/12 . 3 = 1/4 (1)
1/61 < 1/60 ; 1/62 < 1/60 ; 1/63 < 1/60
=> 1/61 + 1/62 + 1/63 < 1/60 + 1/60 + 1/60 = 1/60. 3 = 1/20 (2)
Từ (1) và (2)
=> 1/13 + 1/14 + 1/15 + 1/61 + 1/62 + 1/63 < 1/4 + 1/20
=>S = 1/5 + 1/13 + 1/14 + 1/15 + 1/61 + 1/62 + 1/63 < 1/4 + 1/20 + 1/5 = 5/20 + 1/20 + 4/20 = 10/20 = 1/2 (ĐPCM)
b) Ta có:
\(P=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\)
\(2P=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\)
\(2P-P=1+\frac{1}{2}-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^2}+...+\frac{1}{2^{19}}-\frac{1}{2^{19}}-\frac{1}{2^{20}}\)
\(P=1-\frac{1}{2^{20}}< 1\)
=> P < 1
a/M=2/3.5+2/5.7+2/7.9+.....+2/97.99
M=1/3-1/5+1/5-1/7+..+1/97-1/99
M=1/3-1/99
M=32/99
b)ta có 1/2.3+1/3.4+1/4.5+..+1/2015.2016+1/2016.2017<A
=>1/2-1/3+1/3-1/4+1/4-1/5+..+1/2015-1/2016+1/2016-1/2017<a
1/2-1/2017<A
2/15/4034<A (1)
Ta có
1/1.2+1/2.3+1/3.4+1/4.5+..+1/2015.2016>A
=>1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+..+1/2015-1/2016>A
1-1/2016
2015/2016>A (2)
Từ (1) và (2)=>A không phải là số tự nhiên(đpcm)
a) \(\text{2(x-51)=2.2^2+20}\)
\(2\left(x-51\right)=2.4+20\)
\(2\left(x-51\right)=28\)
\(x-51=28\div2\)
\(x-51=14\)
\(x=14+51\)
\(\text{b)3.(x+1)-26=541}\)
\(3.\left(x+1\right)=541+26\)
\(3\cdot\left(x+1\right)=567\)
\(x+1=567\div3\)
\(x+1=189\)
\(x=189-1\)
\(x=188\)
\(x=65\)
\(\text{c)4(x-3)=7^2-1^10}\)
\(4\left(x-3\right)=49-1\)
\(4\left(x-3\right)=48\)
\(x-3=48\div4\)
\(x-3=12\)
\(x=12+3\)
\(x=15\)
\(\text{e)2x-138=2^3.3^2}\)
\(2x-138=8\cdot9\)
\(2x-138=72\)
\(2x=72+138\)
\(2x=210\)
\(x=210\div2\)
\(x=105\)
\(\text{f)(x-1)^4=16}\)
\(\left(x-1\right)^4=2^4\)
\(x-1=2\)
\(x=2+1\)
\(x=3\)
\(M=\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+.....+\frac{2}{97}-\frac{2}{99}\)
\(M=\frac{2}{3}-\frac{2}{99}=\frac{64}{99}\)
Bài 1 :
\(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
................
\(\frac{1}{2019^2}< \frac{1}{2018.2019}\)
\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{2018.2019}\)
\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\)
\(\Rightarrow B< 1-\frac{1}{2019}< 1\)
\(\Rightarrow B< 1\)
#)Giải :
Bài 3 :
Gọi số cần tìm là x
Theo đầu bài, ta có :
x : 11 dư 6 => x - 6 chia hết cho 11 => n - 6 + 33 = x + 27 chia hết cho 11
x : 4 dư 1 => x - 1 chia hết cho 4 => n - 1 + 28 = n + 27 chia hết cho 4
x : 19 dư 11 => x - 11 chia hết cho 19 => x - 11 + 38 = x + 27 chia hết cho 19
Vì x + 27 chia hết cho 11,4 và 19 => x + 27 = BCNN( 11,4,19 ) = 836
=> x = 836 - 27 = 809
Vậy số cần tìm là 809
Bài 2
a) Ta có
S = \(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)
S = \(\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)
Vì \(\dfrac{1}{13}< \dfrac{1}{12}\)
\(\dfrac{1}{14}< \dfrac{1}{12}\)
\(\dfrac{1}{15}< \dfrac{1}{12}\)
=> \(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}.3\)
Lại có
\(\dfrac{1}{61}< \dfrac{1}{60}\)
\(\dfrac{1}{62}< \dfrac{1}{60}\)
\(\dfrac{1}{63}< \dfrac{1}{60}\)
=> \(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}.3\)
=> S = \(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\) < \(\dfrac{1}{5}+\dfrac{1}{12}.3+\dfrac{1}{60}.3\)
= \(\dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}\) = \(\dfrac{1}{2}\)
=> đpcm
Ta có
\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{x\left(x+2\right)}=\dfrac{2015}{2016}\)
\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+2}=\dfrac{2015}{2016}\)
\(\dfrac{1}{1}-\dfrac{1}{x+2}=\dfrac{2015}{2016}\)
\(\dfrac{1}{x+2}=\dfrac{1}{1}-\dfrac{2015}{2016}\)
\(\dfrac{1}{x+2}=\dfrac{1}{2016}\)
2016 = x + 2
x = 2016 - 2
x = 2014
Vậy x = 2014 là giá trị cần tìm