Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B D C O
Giải
SABCD = (SAOB + SDOC) + (SBOC + SAOD)
= a2 + b2 + M (với M = SBOC + SAOD)
SABCD đạt giá trị nhỏ nhất
\(\Leftrightarrow\) M nhỏ nhất
Theo bất đẳng thức:
\(\left(\dfrac{S_{AOD}+S_{BOC}}{2}\right)^2\ge S_{AOD}.S_{BOC}\) (*)
(Dấu "=" xảy ra khi SAOD = SBOC)
Vì \(\Delta\)AOD và \(\Delta\)AOB có chung đường cao vẽ từ A nên
\(\dfrac{S_{AOB}}{S_{AOD}}=\dfrac{OB}{OD}\) (1)
Tương tự đối với \(\Delta\)COB và \(\Delta\)COD
\(\dfrac{S_{COB}}{S_{COD}}=\dfrac{OB}{OD}\) (2)
Từ (1) và (2) \(\Rightarrow\) SAOB . SCOD = SAOD . SCOB
Khi đó (*) trở thành \(\left(\dfrac{S_{AOD}+S_{BOC}}{2}\right)^2\ge a^2b^2\Rightarrow\dfrac{S_{AOD}+S_{BOC}}{2}\ge\left|a\right|.\left|b\right|\)
\(\Rightarrow\) SABCD = a2 + b2 + M \(\ge\) a2 + b2 + |a| . |b| \(\ge\) (|a| + |b|)2
Vậy SABCD đạt giá trị nhỏ nhất là (|a| + |b|)2 \(\Leftrightarrow\) SAOD = SBOC
Bài 2 : a) Ta có : OM // AB => \(\frac{OM}{AB}=\frac{OD}{DB}\)( Hq talet) (1)
ON // AB => \(\frac{ON}{AB}=\frac{OC}{AC}\)(2)
AB // CD => \(\frac{OD}{OB}=\frac{OC}{OA}\Rightarrow\frac{OD}{OB+OD}=\frac{OC}{OA+OC}\Rightarrow\frac{OD}{DB}=\frac{OC}{AC}\)(3)
Từ (1), (2), (3) => OM/AB = ON/AB => OM = ON
b) Ta có : ON // CD => \(\frac{ON}{CD}=\frac{OB}{DB}\)(4)
Cộng từng vế (1) và (4) ta đc : \(\frac{OM}{AB}+\frac{ON}{CD}=\frac{OD}{DB}+\frac{OB}{DB}=\frac{OD+OB}{DB}=1\)
Suy ra : \(\frac{2OM}{AB}+\frac{2ON}{CD}=2\Rightarrow\frac{MN}{AB}+\frac{MN}{CD}=2\Rightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}\)
c) Để mình tính đã nha