K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 3 2022

Giữ nguyên bình phương và xét dấu như bình thường

Em bỏ bình phương nên xét dấu bị sai dẫn đến kết quả sai

3 tháng 3 2022

A, ra là vậy. Em biết mình sai chỗ nào rồi. Cảm ơn thầy ạ. 

5 tháng 10 2016

Dễ mà 

5 tháng 10 2016

Thế mà cx hỏi

NV
23 tháng 12 2022

3.

Do M là trung điểm BC \(\Rightarrow\overrightarrow{CM}=\dfrac{1}{2}\overrightarrow{CB}\)

N là trung điểm AC \(\Rightarrow\overrightarrow{AN}=\dfrac{1}{2}\overrightarrow{AC}\)

K là trung điểm AB \(\Rightarrow\overrightarrow{BK}=\dfrac{1}{2}\overrightarrow{BA}\)

Do đó:

\(\overrightarrow{AN}+\overrightarrow{CM}-\overrightarrow{KB}=\overrightarrow{AN}+\overrightarrow{CM}+\overrightarrow{BK}=\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{CB}+\dfrac{1}{2}\overrightarrow{BA}\)

\(=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{BA}=\overrightarrow{0}\)

4.

\(\overrightarrow{BC}=\left(6;-2\right)\)

Gọi \(A'\left(x;y\right)\Rightarrow\overrightarrow{BA'}=\left(x+3;y-1\right)\)

Do A' thuộc BC \(\Rightarrow\overrightarrow{BA'}\) và \(\overrightarrow{BC}\) cùng phương

\(\Rightarrow\dfrac{x+3}{6}=\dfrac{y-1}{-2}\Rightarrow x=-3y\)

\(\Rightarrow A'\left(-3y;y\right)\Rightarrow\overrightarrow{AA'}=\left(-3y-2;y-4\right)\)

Mà AA' vuông góc BC \(\Rightarrow\overrightarrow{AA'}.\overrightarrow{BC}=0\)

\(\Rightarrow6\left(-3y-2\right)-2\left(y-4\right)=0\Rightarrow y=-\dfrac{1}{5}\)

\(\Rightarrow A'\left(\dfrac{3}{5};-\dfrac{1}{5}\right)\)

AH
Akai Haruma
Giáo viên
30 tháng 1 2017

Lời giải:

GTLN:

Áp dụng BĐT Cauchy-Schwarz:

\(B^2=(6\sqrt{x-1}+8\sqrt{3-x})^2\leq (6^2+8^2)(x-1+3-x)=200\)

\(\Rightarrow B_{\max}= 10\sqrt{2}\Leftrightarrow \frac{3}{\sqrt{x-1}}=\frac{4}{\sqrt{3-x}}\Leftrightarrow x=\frac{43}{25}\)

GTNN:

Ta biết một bổ đề sau: Với \(a,b\geq 0\Rightarrow \sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)

Cách CM rất đơn giản vì nó tương đương với \(\sqrt{ab}\geq 0\) (luôn đúng)

Áp dụng vào bài toán:

\(\Rightarrow B\geq \sqrt{36x-36+192-64x}=\sqrt{156-28x}\geq 6\sqrt{2}\) (do \(x\leq 3\))

Vậy \(B_{\min}=6\sqrt{2}\Leftrightarrow x=3\)

6 tháng 3 2017

\(x^2-2x+m-1=0\)

\(\Delta=b^2-4ac\)

\(\Rightarrow\Delta=8-4m\)

Theo định lý Viet

\(\Rightarrow\left\{{}\begin{matrix}P=x_1+x_2=\dfrac{-b}{a}\\S=x_1x_2=\dfrac{c}{a}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}P=2\\S=m-1\end{matrix}\right.\)

Để phương trình có 2 nghiệm phân biệt dương

\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\P>0\\S>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8-4m>0\\2>0\left(đúng\right)\\m-1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m>1\end{matrix}\right.\)

\(\Leftrightarrow1< m< 2\) ( thỏa mãn yêu cấu đề bài )

11 tháng 8 2016

ta có

đen ta=4-4(m-1)

=-4m+8m+8

=-(2m-2)2+12>0

để pt có 2no phân biệt dương thì áp dunhj công thức \(\begin{cases}x1x2>0\\x1+x2=\frac{-c}{a}\end{cases}\)

 

 

 

 

 

 

 

28 tháng 7 2016

Hỏi đáp Toán

30 tháng 7 2016

Bài 1:

Gọi số cần tìm là \(\overline{abc}\). Vậy nếu chuyển số cuối lên đầu, ta được số mới có dạng \(\overline{cba}\)

Theo đề bài ra ta có: \(\overline{cab}=5.\overline{abc}+25\)

Vì \(\overline{cab}\) và \(\overline{abc}\) đều là số có 3 chữ số, nên a chỉ có thể là 1. Vì nếu a = 2 thì tích \(5.\overline{abc}\) có giá trị lớn hơn 1000

b = 0 hoặc b = 5 vì \(5.\overline{abc}+25\) sẽ có chữ số tận cùng là 0 hoặc 5

  • TH1: b = 0

Ta có: \(\overline{c10}=5.\overline{10c}+25\)

\(\overline{c00}+10=500+c+25\)

99c = 515

c = \(\frac{515}{99}\) ( loại )

  • TH2: b = 5 

Ta có: \(\overline{c15}=5.\overline{15c}+25\)

\(\overline{c00}+15=750+5c+25\)

95c = 760 

=> c = 8 ( thoả mãn )

Vậy số có 3 chữ số cần tìm là 158

 

DD
24 tháng 8 2021

\(cos\alpha=\frac{1}{2}\Leftrightarrow\alpha=\frac{-\pi}{3}\)(vì \(\frac{-\pi}{2}< \alpha< 0\))

\(cot\left(\frac{\pi}{3}-\alpha\right)=cot\left(\frac{2\pi}{3}\right)=\frac{-\sqrt{3}}{3}\)