K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC
góc HAB chung

=>ΔAHB=ΔAKC

=>AH=AK

b: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có

BC chung

góc KBC=góc HCB

=>ΔKBC=ΔHCB

=>góc IBC=góc ICB

=>ΔIBC can tại I

Xét ΔABC có

BH,CK là đường cao

BH cắt CK tại I

=>I là trực tâm

=>AI vuông góc BC tại M

ΔIBC cân tại I

mà IM là đường cao

nên IM là phân giác của góc BIC

c: Xét ΔABC có AK/AB=AH/AC

nên KH//BC

25 tháng 12 2015

tick đi  rồi tớ làm hộ cho

14 tháng 5 2020

xét tam giác ABC cân tại A

=> AB=AC(t/c tam giác cân)

=>^ABC=^ACB(t/c tam giác cân)

xét tam giác BAH và tam giác CAK

^A chung

AB=AC(cmt)

^AHB=^AKC

=>  tam giác BAH = tam giác CAK(gcg)

=>BH=CK(2 cạnh tương ứng)

=>CH=BK (2 cạnh tương ứng)

b) bạn kiểm tra lại đề bài câu b nhé ! mik chưa thấy dữ kiện nào nói về điểm D cả

c) Ta có : AB=BK+AK

               AC=CH+AH

mà AB=AC(cmt);CH=BK(cmt)

=> AK=AH

xét tam giác KAO và tam giác HAO

AK=AH(cmt)

^AKO=^AHO=90o

AO-cạnh chung

=> tam giác KAO = tam giác HAO (ch-cgv)

=>^KAO=^HAO(2 góc tương ứng)

=>^BAI=^CAI

xét tam giác BAI và tam giác CAI

AB=AC(cmt)

^BAI=^CAI(cmt)

AI-cạnh chung

=> tam giác BAI = tam giác CAI

=>^AIB=^AIC ( 2 góc tương ứng)

mà ^AIB+^AIC=180o(kề bù)

=> ^AIB=^AIC=90o

=>AI vuông góc BC

      

14 tháng 5 2020

bài 2 bạn tham khảo tại link này 

https://h o c 2 4.vn/hoi-dap/question/494804.html

nhớ viết liền từ h o c 2 4 nha! vì olm ko cho viết

a: Xet ΔAHB vuông tại H và ΔAKC vuông tại K có

góc BAH chung

AB=AC

=>ΔAHB=ΔAKC

=>AH=AK

=>ΔAHK cân tại A

b: góc ABH+góc HBC=góc ABC

gócACK+góc ICB=góc ACB

mà góc ABC=góc ACB; góc ABH=góc ACK

nên góc IBC=góc ICB

=>ΔIBC cân tại I

mà IM là đường cao

nên IM là phân giác của góc BIC

7 tháng 1 2020

A B C D H A' x x/2

Kẻ đường cao AH ; Vì \(\Delta\)ABC cân 

=> H là trung điểm BC  

Xét \(\Delta\)ABC cân tại A có ^A = 120\(^o\)

=> ^ABH = ^ACH = 30\(^o\)

=> ^BAH = 60 \(^o\)

Lấy A' đối xứng với A qua H; BH vuông góc AA'; H là trung điểm AA'

=> \(\Delta\)ABA' cân tại B mà  ^BAA' = ^BAH = 60\(^o\)

=> \(\Delta\)ABA'  đều .

Đặt: AB = x => AA' = x => AH = x/2

+) \(\Delta\)ABH vuông tại H => BH\(^2\)= AB\(^2\)- AH\(^2\)\(x^2-\frac{x^2}{4}=\frac{3x^2}{4}\)

=> \(BH=\frac{\sqrt{3}x}{2}\)

=> \(BC=2BH=\sqrt{3}x=\sqrt{3}AB\)

( Như vậy chúng ta có nhận xét: Cho \(\Delta\)ABC cân tại A; ^A = 120\(^o\)=> \(BC=\sqrt{3}AB\))

=> \(AC=AB=\frac{BC}{\sqrt{3}}=\frac{6}{\sqrt{3}}\)

+) Xét \(\Delta\)ABD vuông tại A có: ^ABD = ^ABH  = 30 \(^o\)=> ^ADB = 60\(^o\)

=> ^ADC = 180\(^o\)- ^ADB = 180\(^o\)- 60 \(^o\)= 120\(^o\) 

Mà ^BAC = 120\(^o\); ^BAD = 90\(^o\)

=> ^DAC = 120\(^o\)- 90 \(^o\)= 30\(^o\)

+) Xét \(\Delta\)DAC có: ^DAC = 30\(^o\); ^ADC = 120\(^o\) => ^DCA = 30\(^o\)

=> \(\Delta\)DAC cân tại D và có: ^ADC = 120\(^o\). Theo nhận xét in đậm ở trên: \(AC=\sqrt{3}.DC\)

=> \(DC=\frac{AC}{\sqrt{3}}=\frac{\frac{6}{\sqrt{3}}}{\sqrt{3}}=\frac{6}{3}=2\)

=> \(BD=BC-DC=6-2=4cm\)

27 tháng 1 2019

Hình bạn tự vẽ

a) CMR: AH = AK:

Xét tam giác AHB vuông tại H và tam AKC vuông tại K, ta có:

AB = AC ( vì tam giác ABC cân tại A )

góc A chung

Do đó: tam giác AHB = tam giác AKC ( ch-gn )

Suy ra: AH = AK ( 2 cạnh tương ứng)

b) CMR: góc KAI = góc HAI:

Xét tam giác KAI vuông tại K và tam giác HAI vuông tại H, ta có:

AH = AK ( chứng minh câu a )

cạnh AI chung

Do đó: tam giác KAI = tam giác HAI ( ch-cgv)

suy ra: góc KAI = góc HAI ( 2 góc tương ứng )

c) CM: AM vuông góc BC tại M ( AM vuông góc tại M nhé bạn )

Xét tam giác BAM và tam giác CAM, có:

cạnh AM chung

AB = AC ( vì tam giác ABC cân tại A )

góc KAI = góc HAI ( chứng minh câu b )

do đó: tam giác BAM = tam giác CAM ( c-g-c)

suy ra: góc AMB = góc AMC ( 2 góc tương ứng )

ta có: góc AMB + góc AMC = 180 độ ( kề bù )

 hay 2. góc AMB = 180 độ

=> 180 độ : 2 = 90 độ

do đó: AM vuông góc BC tại M ( đpcm )

Câu d mình làm sau do máy mình hết pin rồi!

13 tháng 8 2017

bn cho nhìu wá

13 tháng 8 2017

@Hoàng Thị Tuyết Nhung bạn làm giúp mình câu 1 thôi nha